

Bollettino Tecnico

BT16L145I--04

SPINchiller³

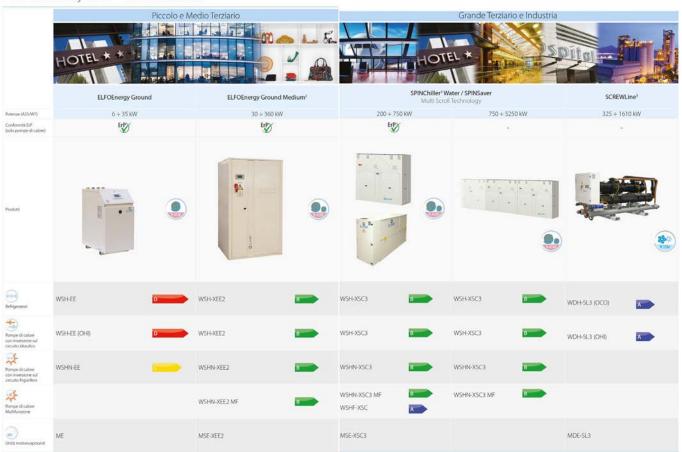
Pompa di calore reversibile condensata ad acqua per installazione interna

SERIE WSHN-XSC3 70.4-240.4

Potenza frigorifera nominale da 212 kW a 720 kW Potenza termica nominale da 243 kW a 831 kW

- ► Tecnologia scroll modulare R-410A
- ▶ Due circuiti refrigeranti indipendenti
- ▶ Recupero parziale del calore di condensazione
- ► Centrale preassemblata
- ► Versatilità applicativa
- ▶ Alta efficienza ai carichi parziali, ESEER fino a 5,9

Indice dei contenuti


Features and benefits	4
Caratteristiche tecniche unità standard	15
Soluzioni impiantistiche	17
Configurazione unità	18
Dati tecnici generali - Prestazioni	19
Dati tecnici generali Caratteristiche costruttive	20
Livelli sonori	21
Campi di impiego - Raffreddamento	22
Campi di impiego - Riscaldamento	22
Portate d'acqua ammissibili	23
Fattori di correzione per impiego con glicole	23
Fattori di correzione incrostazioni	23
Tarature protezioni e controlli	23
Perdite di carico lato utilizzo/sorgente	24
Prestazioni in raffreddamento	25
Prestazioni in riscaldamento	27
Configurazioni	29
Utilizzo efficiente dell'energia con il recupero di calore	30
Guppi idronici lato sorgente	31
Gruppi idronici lato utilizzo	39
Accessori	44
Accessori forniti separatamente	47
Compatibilità opzioni	51
Dimensionali	52

Il sistema idronico Clivet

Progettata per fornire alta efficienza energetica e sostenibilità dell'investimento, l'ampia gamma di refrigeratori di liquido e pompe di calore di Clivet per la climatizzazione ad alta efficienza degli ambienti Residenziali e Commerciali e per le applicazioni Industriali è disponibile con sorgente aria oppure acqua.

HYDRONIC System - Water Source

Specializzazione

Ogni destinazione d'uso ha esigenze specifiche. Queste esigenze determinano l'efficienza globale. Per questo motivo il sistema idronico Clivet offre sempre la migliore soluzione in ogni progetto.

- Gamma modulare con oltre 8000 kW di capacità complessiva
- Regolazione di capacità con tecnologia Scroll modulare e Vite
- Versioni multifunzione
- Installazione esterna oppure interna di tipo canalizzato

Centralità del Rinnovo dell'aria

Dal Rinnovo dell'aria dipende il comfort negli ambienti. Poiché spesso rappresenta il principale carico energetico dell'edificio, esso determina anche il costo di gestione dell'intero impianto.

ZEPHIR3

Sistema autonomo di Aria Primaria a recupero termodinamico dell'energia

- Semplifica l'impianto, riduce i generatori termici e frigoriferi
- Purifica l'aria con i filtri elettronici di serie
- Aumenta l'efficienza energetica e consente un risparmio anche del 40% sui costi di gestione
- Da -40°C a +50°C esterni

Sistema completo di Terminali e UTA

Le unità terminali idroniche sono molto diffuse per la loro versatilità ed affidabilità. La gamma Clivet comprende numerose versioni che ne semplificano l'applicazione nei diversi tipi di impianto ed edificio.

ELFOSpace

Terminali idronici ad alta efficienza energetica

AQX

Unità di climatizzazione

- Terminali a vista e da incasso, da 1 a 90 kW
- Installazione orizzontale e verticale
- Ventilatori DC a risparmio energetico
- Unità di climatizzazione componibili fino a 160.000 m³/h
- Certificazione EUROVENT

SPINchiller³: tecnologia scroll modulare per ogni applicazione

SPINchiller³ è la nuova generazione di refrigeratori di liquido e pompe di calore Clivet con tecnologia scroll modulare. Grazie all'altissima efficienza stagionale e versatilità della gamma completa, rappresenta la soluzione ideale per molteplici tipologie di installazione.

WSHN-XSC3

Pompa di calore condensata ad acqua

- Recupero parziale del calore di condensazione
- Certificazione Eurovent

WSH-XSC3

Refrigeratore di liquido condensato ad acqua

- Disponibile in versione solo freddo e solo caldo e reversibile su circuito idraulico
- Recupero parziale del calore di condensazione
- Certificazione Eurovent

Serie dedicata documentata separatamente

WSHN-XSC3 Multifunzione

Pompa di calore con funzionamento contemporaneo caldo/freddo condensata ad acqua

- Sistema a quattro tubi
- Sistema due tubi e recupero totale del calore di condensazione

Serie dedicata documentata separatamente

Costo o affidabilità?

Il dilemma delle moderne applicazioni impiantistiche

Gli impianti di climatizzazione negli edifici commerciali influenzano sia l'investimento iniziale che i costi mensili di gestione, per tutta la loro vita utile. Nelle applicazioni residenziali con impianto centralizzato questo tema è ancora più sentito e si unisce alla ricerca della massima flessibilità di funzionamento, per servire utenti diversi evitando sprechi di energia e quindi di denaro. Sono infine numerose le applicazioni industriali che richiedono acqua calda oppure refrigerata come fluido di servizio, fluido di processo oppure come fluido vettore per il comfort degli operatori e per la conservazione dei beni ed il corretto funzionamento dei cicli. In tutti questi casi è determinante l'affidabilità di funzionamento dell'impianto.

Impianti idronici ad alta efficienza

Gli impianti idronici ad alta efficienza sono molto versatili, sicuri ed ampiamente diffusi

A fronte di un costo apparentemente contenuto, i sistemi ad espansione diretta di tipo split, multisplit e VRF presentano numerosi limiti nelle applicazioni commerciali e residenziali. Richiedono ad esempio un impianto separato per il necessario trattamento dell'aria primaria. Le tubazioni che contengono il refrigerante attraversano i locali serviti e pertanto sono interessati da restrizioni e limitazioni d'uso. Non possono tecnicamente operare nella modalità freecooling di raffrescamento gratuito, molto efficace e conveniente grazie ai risparmi energetici che permette.

I sistemi di tipo idronico sono certamente più completi e versatili. Essi consentono l'adozione di diversi tipi di terminale nell'ambiente servito, dai ventilconvettori a vista oppure integrati negli arredi, fino ai sistemi radianti o ad induzione. Sono quindi insostituibili nelle applicazioni di servizio e di processo in ambito industriale.

Le prestazioni dei principali componenti, come i refrigeratori di liquido e le pompe di calore idroniche, sono infine controllate mediante appositi programmi di certificazione, come Eurovent.

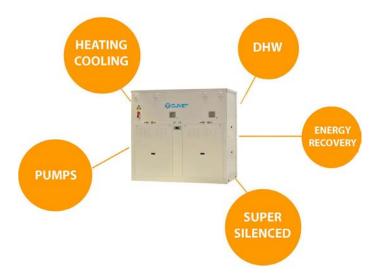
Evoluzione tecnologica Clivet

I refrigeratori e le pompe di calore Clivet riducono i consumi e sono compatti ed affidabili

Con oltre venticinque anni di evoluzione tecnologica, i refrigeratori di liquido e le pompe di calore di Clivet rappresentano lo stato dell'arte nella climatizzazione degli ambienti residenziali, commerciali ed industriali.

Il loro successo si basa sull'elevata efficienza energetica, sulla compattezza e la semplicità di conduzione e di manutenzione e sulla grande versatilità nella scelta del modello più adatto alla specifica realizzazione.

SPINchiller³


Fornisce tutta l'evoluzione tecnologica di Clivet agli impianti idronici di alta potenzialità

Compressori Scroll ad alta efficienza, scambiatori di calore ad elevate prestazioni, funzionamento completamente automatico: sono alcune delle tecnologie disponibili all'interno di SPINchiller³, in una gamma di modelli ideale per la climatizzazione di locali commerciali, residenziali ed industriali di alta potenza.

La migliore combinazione tra costo del primo investimento e nell'intero ciclo di vita dell'impianto.

 Si distingue per l'altissima efficienza energetica nel funzionamento a carico parziale

SPINchiller³ può inoltre essere fornito in numerose configurazioni costruttive, completo dei principali componenti impiantistici installati a bordo.

I vantaggi

Alta efficienza energetica nel ciclo annuale

SPINchiller³ riduce i consumi energetici annui grazie all'alta efficienza a carico parziale, ovvero la condizione di gran lunga più frequente nel ciclo di vita dell'impianto. Aumenta così anche il valore dell'edificio servito. I principali componenti sono prodotti su scala industriale, con la massima affidabilità costruttiva e facilmente reperibili come ricambi. Per aumentare ulteriormente l'efficienza energetica in un sistema con più unità SPINchiller³ che lavorano sullo stesso impianto è disponibile l'innovativa funzionalità ECOSHARE che ripartisce automaticamente il carico e attiva le pompe necessarie.

Semplificazione dell'impianto

Tutte le principali funzionalità sono fornite da Clivet a bordo macchina, già assemblate e collaudate, a differenza di altri costruttori che le rendono disponibili mediante numerosi componenti aggiuntivi da installarsi in opera.

Compattezza e grande versatilità applicativa

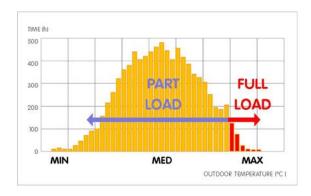
Adatto a tutte le tipologie di terminali, dai ventilconvettori ai sistemi radianti alle travi fredde, SPINChiller³ dispone anche di configurazioni Supersilenziate, Recupero energetico per la produzione gratuita di acqua calda, dispositivi di gestione ECOSHARE.

Tecnologia scroll modulare senza confini

Con SPINchiller³ la tecnologia con compressori scroll modulari si eleva a livelli prestazionali e di versatilità mai visti prima, tali da garantire competitività in settori applicativi sempre più esigenti. L'efficienza stagionale al vertice della categoria, premia SPINchiller³ in confronto a diverse tecnologie di refrigeratori di liquido raffreddati ad acqua. Un raffronto con una tecnologia concorrente con SPINchiller³ come:

refrigeratori di liquido raffreddati ad acqua con compressori vite regolati da inverter

porta a concludere che un'efficienza stagionale raggiunta oramai paragonabile a quella di refrigeratori con compressori vite permette a SPINchiller³ di essere una soluzione estremamente vantaggiosa, considerando i tempi di ritorno dell'investimento iniziale che sono sempre superiori a valori normalmente considerati accettabili per investimenti impiantistici, pari a 3 anni.


Comfort e risparmio energetico in un'unica soluzione

Necessaria la massima efficienza a carico parziale

La massima potenza generata dal sistema viene richiesta solo per brevi periodi di tempo.

È dunque fondamentale disporre della massima efficienza nelle condizioni di carico parzializzato.

Solo in questo modo si ha la certezza di ridurre realmente i consumi complessivi su base annua.

L'efficienza a carico parziale determina l'efficienza stagionale

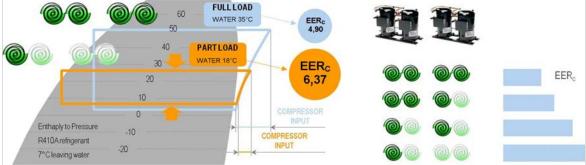
L'efficienza stagionale è rappresentata convenzionalmente dai parametri ESEER secondo Eurovent e IPLV secondo ARI. Entrambi attribuiscono un elevato peso al funzionamento a carico parziale proprio perché si tratta della condizione prevalente di funzionamento.

CARICO IMPIANTO	PESO (ESEER) *	PESO (IPLV) *
100%	3%	1%
75%	33%	42%
50%	41%	45%
25%	23%	12%

^{*} Tempo di erogazione di riferimento EUROVENT (ESEER) e ARI (IPLV) per il calcolo dell'efficienza stagionale

La tecnologia SPINchiller³ esalta l'efficienza ai carichi parziali

SPINchiller³ impiega compressori ad alta efficienza di tipo Scroll.


I vantaggi sono:

- compressori prodotti in grande serie su scala industriale, con rigorosi controlli di qualità e massima affidabilità costruttiva grazie agli elevati volumi di produzione.
- ogni circuito frigorifero impiega due oppure tre compressori Scroll, in relazione alle diverse taglie di macchina. Quando sono impiegati due compressori, le loro taglie sono inoltre diverse, in modo da ottenere più gradini di regolazione. In tal modo si può fornire all'utilizzo solo l'energia effettivamente necessaria.

L'efficienza raddoppia

La superficie di scambio termico viene dimensionata per il funzionamento a piena potenza. A carico parziale alcuni compressori vengono però automaticamente disattivati. In questa condizione, i compressori in funzione dispongono di una superficie molto maggiore.

Ne consegue la diminuzione della temperatura di condensazione e l'aumento della temperatura di evaporazione. Si riduce così la potenza assorbita dai compressori in rapporto alla resa e quindi aumenta l'efficienza complessiva di macchina.

EERc = Efficienza energetica riferita ai compressori

Due configurazioni acustiche disponibili

A misura di business

Tutti i modelli SPINchiller³ sono caratterizzati da elevate prestazioni energetiche a carico parziale e dunque da alta efficienza stagionale ESEER.

Le due configurazioni disponibili consentono di scegliere la migliore combinazione tra costo del primo investimento e livello di silenziosità.

Configurazione acustica base

La configurazione acustica Base (BN), grazie all'evoluzione tecnologica di Clivet, è caratterizzata da un'altissima efficienza stagionale, si rivolge tuttavia alle realizzazioni più sensibili all'investimento iniziale, proponendo una struttura semplificata.

La struttura è priva di pannellatura e i collegamenti idraulici devono essere realizzati all'interno dell'unità (a cura del Cliente).

Configurazione acustica Supersilenziata

La configurazione acustica Supersilenziata (EN), oltre che per l'altissima efficienza stagionale, si distingue per una pressione sonora ridotta fino a 8 dB(A).

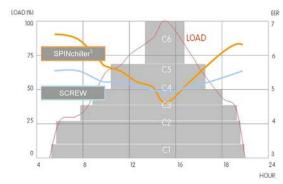
La struttura è completa di pannellatura insonorizzata e i collegamenti idraulici sono a filo unità.

Le dimensioni rimangono invariate rispetto alla versione Base.

Perfetta per la certificazione LEED

Tutte le grandezze dalla 70.4 alla 160.4 soddisfano entrambi i prerequisiti 2 (Minimum Energy Performance) e 3 (Fundamental Refrigerant Management) dell'area tematica Energia ed Ambiente. Soddisfano inoltre i parametri del Credito 4 (Enhanced Refrigerant Management) che consente di acquisire 1 punto.

Clivet è impegnata nella diffusione dei principi dell'edilizia sostenibile e aderisce come socio ordinario a GBC Italia, l'associazione che collabora con USGBC, l' Istituto Statunitense che promuove a livello mondiale il sistema di certificazione indipendente LEED.

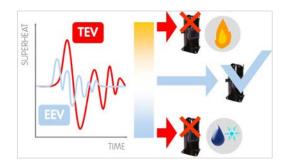


Flessibilita' ed affidabilita' superiori

Precisione efficiente

Le logiche di attivazione sequenziale dei compressori di SPINchiller³ consentono di:

- seguire fedelmente il carico all'utilizzo, fornendo dunque un migliore comfort
- ridurre il numero di avviamenti per compressore, e quindi la principale causa di usura
- aumentare dunque la vita utile dell'unità
- ridurre tempi e costi per eventuali riparazioni, grazie alla modularità dei componenti, le loro ridotte dimensioni ed il minore costo rispetto a compressori semiermetici.



SI RIDUCE IL NUMERO DI AVVIAMENTI E DUNOUE AUMENTA LA VITA UTILE

Funzionamento stabile ed affidabile

La valvola di espansione di tipo elettronico (EEV) si adatta in modo rapido e preciso all'effettivo carico richiesto all'utilizzo, consentendo una regolazione più stabile ed accurata rispetto alle valvole termostatiche meccaniche (TEV). Ne derivano inoltre un ulteriore incremento dell'efficienza ed una maggiore durata dei compressori.

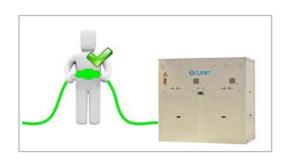
Tramite il controllo del surriscaldamento previene inoltre fenomeni nocivi per il compressore, come la sovratemperatura ed il ritorno di liquido, aumentandone ulteriormente l'efficienza e la durata.

Manutenzione semplificata

Oltre ad essere efficiente, SPINchiller³ migliora anche la manutenzione del sistema.

L'eventuale avaria di un compressore non pregiudica infatti il funzionamento complessivo.

I compressori Scroll sono inoltre molto compatti, di facile reperimento e semplici da movimentare in caso di sostituzione.



Alimentazione elettrica sotto controllo

La corretta alimentazione elettrica garantisce il funzionamento dell'unità e ne preserva i numerosi componenti elettrici.

Il monitore di fase, fornito di serie:

- controlla la presenza e l'esatta sequenza delle fasi
- verifica eventuali anomalie di tensione (-10%)
- ripristina automaticamente il funzionamento dell'unità appena viene ristabilita la corretta alimentazione.

Il controllo automatico coordina le risorse per la massima efficienza energetica

Controllo evoluto

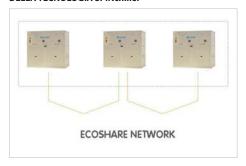
Il sistema di controllo coniuga in un'unica soluzione efficienza operativa e facilità d'uso. Monitorando continuamente tutti i parametri di funzionamento dell'unità garantisce il mantenimento di un'efficienza energetica ottimale. La regolazione comprende numerose funzioni di sicurezza ed una gestione completa degli allarmi.

Comprende funzionalità avanzate come la programmazione giornaliera e settimanale e la limitazione automatica del massimo assorbimento elettrico (demand limit).

Il terminale di interfaccia è dotato di un display grafico retroilluminato e di una tastiera di accesso multifunzionale. Il menù a più livelli è protetto da password differenziate per le diverse tipologie di utente.

Controllo remoto (optional)

Il controllo remoto consente l'accesso alle stesse funzioni che sono accessibili tramite l'interfaccia utente a bordo dell'unità, ed è installabile ad una distanza massima di 350 metri.


Modularità

Nel caso di edifici di notevoli dimensioni che richiedano potenze elevate è consigliabile utilizzare più unità.

Le unità SPINchiller³ sono progettate per essere collegate in parallelo in logica modulare, beneficiando dei seguenti vantaggi:

- Maggiore flessibilità, amplificata dalla capacità di seguire il carico da parte della regolazione
- Maggiore affidabilità, poiché un'eventuale avaria di una delle unità, non interrompe l'erogazione di capacità all'impianto da parte delle altre unità.
- Maggiore efficienza, poiché in questo modo l'energia viene prodotta dove e quando serve in base alle necessità della zona servita.
- Il controllo a microprocessore in abbinamento a ECOSHARE consente di coordinare fino a 7 unità in rete locale (1 unità Master e 6 Slave).

SISTEMA MODULARE CHE AMPLIFICA I VANTAGGI DELLA TECNOLOGIA SPINchiller²

Gestione remota di sistema

SPINchiller³ è dotato di serie di:

- contatto pulito per comando on/off a distanza
- contatti puliti per visualizzazione remota stato compressori
- impostazione da interfaccia utente Off / On locale / On seriale
- contatto pulito per la remotizzazione di eventuali allarmi

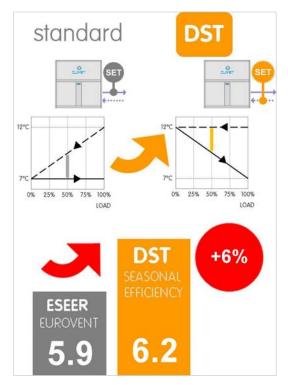
Grazie ai diversi protocolli di comunicazione disponibili l'unità è inoltre in grado di scambiare informazioni con i principali sistemi di supervisione mediante collegamenti di tipo seriale.

Misurazione dell'energia

Il monitoraggio dei consumi di energia e della potenza istantanea impiegata è il punto di partenza per migliorare la gestione energetica e l'efficienza dell'impianto. Con il misuratore di energia opzionale l'utilizzatore visualizza tutte le informazioni sui parametri elettrici dell'unità sull'interfaccia a bordo macchina o per via seriale.

L'integrazione con la funzione Demand Limit fornita di serie permette inoltre di intervenire sui consumi limitandoli nel caso in cui eccedano il limite previsto.

La logica di regolazione DST aumenta ulteriormente l'efficienza energetica stagionale


SPINchiller³ è dotato di serie della logica di regolazione DST (Dynamic Supply Temperature), attivabile dall'utente.

A differenza della logica di regolazione tradizionale che mira a mantenere sempre costante la temperatura sulla mandata dell'acqua, DST mira a mantenere costante la temperatura sul ritorno dell'acqua dall'impianto, variando in modo dinamico la temperatura di mandata in relazione al carico. Nel raffreddamento a carico parziale sale così la temperatura di evaporazione e quindi aumenta ulteriormente l'efficienza energetica stagionale.

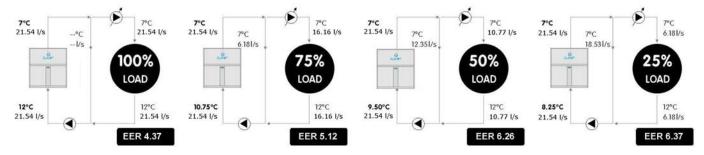
La regolazione DST consente un'importante riduzione dei consumi e dei costi operativi in particolare nelle applicazioni civili, dopo aver verificato la capacità di deumidifica del sistema di trattamento dell'aria nel raffreddamento a carico parziale.

La regolazione DST è particolarmente interessante in abbinamento a sistemi di rinnovo dell'aria di tipo termodinamico attivo. Grazie al proprio circuito ad espansione diretta, essi operano infatti il trattamento dell'aria esterna in modo autonomo ed indipendente da SPINchiller³ che può così variare la temperatura di mandata dell'acqua all'impianto, a vantaggio dell'efficienza energetica nel ciclo annuale.

La logica di regolazione DST è in alternativa alla logica di regolazione a portata variabile.

Esempio applicativo

Lo schema seguente rappresenta le diverse temperature di esercizio nella produzione di acqua refrigerata alle diverse condizioni di carico per un tipico impianto civile, composto da:


- circuito primario a portata d'acqua costante
- circuito secondario a portata d'acqua variabile in funzione del carico (variabilità lineare, per semplicità).

La logica di regolazione tradizionale mantiene costante la temperatura di mandata dell'acqua ai terminali ambiente ed alle unità di trattamento dell'aria esterna, affinché queste ultime possano effettuare la necessaria deumidifica.

La logica di regolazione DST permette invece di innalzare la temperatura di mandata dell'acqua all'impianto nel funzionamento a carico parziale, aumentando così ulteriormente l'efficienza energetica stagionale di SPINchiller³.

L'applicazione di DST dovrà essere verificata in sede di progetto in base agli specifici vincoli impiantistici.

Logica di regolazione tradizionale (temperatura di mandata acqua all'impianto = costante)

Logica di regolazione DST (temperatura di ritorno acqua dall'impianto = costante)

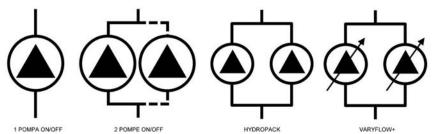
La tecnologia di SPINchiller³ industrializza l'impianto

Centrale preassemblata

SPINchiller³ può essere fornito completo dei componenti impiantistici previsti all'esterno delle unità.

- Riduce i tempi di progettazione: tutti gli accessori sono selezionati per garantire la migliore efficienza stagionale.
- **Riduce i costi di installazione:** gli accessori già collegati meccanicamente, cablati elettricamente, gestiti da un unico controllo e collaudati, sono pronti per essere messi subito in funzione.
- **Riduce gli ingombri:** qualora la potenza termica o frigorifera richiesta sia molto elevata, è possibile affiancare più unità, riducendo notevolmente gli spazi tecnici, aumentando lo spazio disponibile per altri utilizzi e facilitando le operazioni di manutenzione.

Modulazione continua della portata dell'acqua


SPINchiller³ permette l'addozione di vari gruppi idronici sia lato utilizzo sia lato sorgente.

- Il gruppo di pompaggio modulante VARYFLOW+ composto da due pompe in parallelo comandate da inverter, permette una precisa modulazione della portata dell'acqua riducendo notevolmente i consumi. Nei momenti in cui la temperatura dell'acqua dell'impianto si trova in condizioni critiche VARYFLOW+ permette il controllo della temperatura di condensazione o evaporazione estendendo i limiti di funzionamento di SPINchiller³.
- Il gruppo di pompaggio HYDROPACK, composto da 2 pompe in parallelo, riduce automaticamente la portata d'acqua in condizioni critiche, evitando blocchi per sovraccarico e conseguenti interventi di personale tecnico specializzato. E' molto utile durante gli avviamenti, alla ripartenza dopo le pause di funzionamento (es. fine settimana) oppure dopo un lungo periodo di inattività.

Entrambi i gruppi idronici assicurano la propria funzionalità anche in caso di temporanea indisponibilità di una delle due pompe, garantendo circa l'80% della portata nominale. In questa situazione la prestazione dell'unità varia solamente del 2%.

Nell'eventualità di particolari necessità impiantistiche, sono anche disponibili i seguenti gruppi idronici:

- Pompa ON/OFF la soluzione tradizionale con elevata prevalenza utile.
- Pompa ON/OFF + Pompa ON/OFF in stand-by la soluzione che privilegia l'affidabilità. La regolazione di bordo bilancia le ore di funzionamento delle 2 pompe ed in caso di eventuale avaria segnala il guasto ed attiva automaticamente la pompa di riserva.
- Valvola 2 vie o 3 vie modulante lato sorgente gestita dal controllo elettronico, permette di estendere il campo di funzionamento dell'unità, modulando la portata dell'acqua lato sorgente in funzione della temperatura.
- Valvola 2 vie modulante lato sorgente per elevati DP soluzione che si adatta alle esigenze impiantistiche con pressioni elevate (da 2 fino a 3,5 bar).

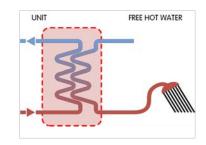
I vantaggi della portata variabile

L'energia spesa per il pompaggio del fluido vettore ha un peso determinante sull'efficienza stagionale. La possibilità di avere il controllo di portata variabile è opzione disponibile per tutte le unità e consente un risparmio di energia durante la modalità di funzionamento a carico parziale. Il consumo energetico delle pompe è proporzionale alla velocità di rotazione del motore elevata al cubo. Facile comprendere quale possa essere il vantaggio nella condizione in cui la portata d'acqua venga ridotta del 40% rispetto alle condizioni nominali: il risparmio sul consumo elettrico della pompa è del 75%.

La logica di regolazione della portata è atta a mantenere fisso il salto di temperatura tra ingresso ed uscita dell'acqua allo scambiatore, garantendo al contempo un regime di massima efficienza ed un funzionamento all'interno del campo d'impiego dello scambiatore in termini di portate e perdite di carico.

La logica di regolazione agisce in contemporaneità sia sulla portata d'acqua sia sulla gestione dei compressori che avviene per mezzo di gradini di parzializzazione. Il controllo proporzionale-integrale-derivativo garantisce un funzionamento stabile e preciso.

Vi è inoltre la possibilità di gestire le pompe in maniera indipendente a garanzia di funzionamento anche nel caso di avaria di una o più pompe.


Produce gratuitamente acqua calda

Può effettuare il recupero del calore di condensazione in modo:

• parziale: recupera circa il 25% del calore disponibile (desurriscaldatore)

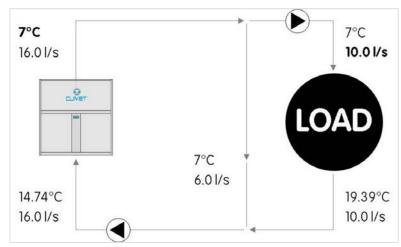
Consente la produzione gratuita di acqua calda per:

- alimentazione di batterie ad acqua calda per post-riscaldamento
- produzione di acqua calda sanitaria (con scambiatore intermedio)
- altri processi o lavorazioni

Ulteriori considerazioni sull'installazione

L'ampio campo operativo di SPINchiller³ è in grado di soddisfare la maggior parte delle applicazioni impiantistiche. In alcuni casi le particolari condizioni richieste all'utilizzo possono uscire dal campo operativo dell'unità. Semplici accorgimenti sull'impianto consentono il corretto funzionamento e la soddisfazione della richiesta. Si riportano due esempi applicativi.

Portata d'acqua fuori limite


SPINchiller³ opera con portata d'acqua costante all'evaporatore, tra un valore minimo ed uno massimo riportati nella documentazione tecnica.

Valori di portata inferiori possono causare formazione indesiderata di ghiaccio, incrostazioni, minore precisione di controllo, arresto dell'unità per intervento delle sicurezze di bordo.

Valori di portata maggiori possono causare perdite di carico molto alte, elevati costi di pompaggio, minore precisione di controllo, erosione degli scambiatori.

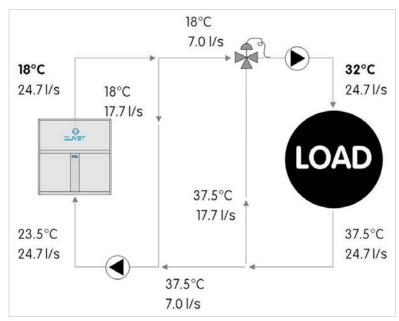
Nell'esempio riportato, la portata richiesta é inferiore al valore minimo consentito all'evaporatore, mentre le temperature di esercizio rientrano nel campo funzionale dell'unità.

La tubazione di by-pass opportunamente dimensionata risolve il problema.

Esempio riferito a WSHN-XSC3 160.4 . Portata acqua idonea per il corretto funzionamento dell'unità.

Temperatura fuori limite

SPINchiller³ opera con le temperature di mandata all'impianto riportate nella documentazione tecnica.


Valori di temperatura inferiori possono causare formazione indesiderata di ghiaccio, arresto dell'unità per intervento delle sicurezze di bordo.

Valori di temperatura superiori possono causare malfunzionamento e danneggiamento dei compressori, minore precisione di controllo, arresto dell'unità per intervento delle sicurezze di bordo.

Nell'esempio riportato, la temperatura richiesta eccede il valore massimo consentito all'evaporatore, mentre la portata d'acqua rientra nel campo funzionale dell'unità.

La tubazione di by-pass ed il sistema di miscelazione opportunamente dimensionati risolvono il problema.

Qualora sia la portata d'acqua che la temperatura all'utilizzo eccedano i valori previsti dal refrigeratore, è sufficiente combinare i due semplici casi appena descritti.

Esempio riferito a WSHN-XSC3 160.4. Temperatura acqua mandata idonea per il corretto funzionamento dell'unità. Portata acqua

Salto termico all'evaporatore

Le prestazioni nominali di SPINchiller³ sono riferite ad un salto termico all'evaporatore pari a 5°C. E' possibile impiegare un diverso salto termico nel funzionamento a pieno carico, purché sia la portata che le temperature operative rientrino nei limiti previsti. A titolo indicativo, ciò corrisponde ad un salto termico minimo di circa 3°C e massimo di circa 10°C (i valori esatti devono essere determinati a partire dalle portate e temperature ammesse).

Caratteristiche tecniche unità standard

Compressore

Compressore ermetico Scroll ad alta efficienza a spirale orbitante completo di carica olio, protezione del motore contro le sovratemperature, sovracorrenti e contro temperature eccessive del gas di mandata con riscaldatore dell'olio ad inserimento automatico per prevenirne la diluizione da parte del refrigerante all'arresto del compressore. Compressori, montati su gommini antivibranti per evitare la trasmissione di rumore e vibrazioni, collegati in TANDEM su un unico circuito frigo con equalizzazione bifasica dell'olio, che consentono di raggiungere elevate efficienze a carico parziale. Processo di compressione uniforme con ridotto numero di parti in movimento che garantiscono livelli molto bassi di rumorosità e vibrazioni.

Struttura

Struttura portante e basamento interamente realizzati in robusta lamiera d'acciaio, spessore dai 30/10 ai 40/10, con trattamento superficiale di zincatura a caldo e verniciatura, per le parti a vista, a polveri poliestere RAL 9001, che garantisce ottime caratteristiche meccaniche ed elevata resistenza alla corrosione nel tempo.

Pannellatura

Pannellatura esterna in lamiera d'acciaio, spessore 20/10, con trattamento superficiale in zinco-magnesio verniciata a polveri poliestere RAL 9001 che assicura superiore resistenza alla corrosione nelle installazioni esterne ed elimina la necessità di periodiche verniciature. Pannelli facilmente removibili per permettere totale accesso ai componenti interni e rivestiti sul lato interno con materiale fonoassorbente per contenere i livelli sonori dell'unità.

Scambiatore interno

Scambiatore ad espansione diretta del tipo a piastre saldobrasate in acciaio inox AISI 316, in pacco senza guarnizioni utilizzando il rame come materiale di brasatura, a basso contenuto di refrigerante ed elevata superficie di scambio, completo di:

- isolamento termico esterno anticondensa di spessore 9,5 mm, in elastomero espanso estruso a celle chiuse
- pressostato differenziale lato acqua;
- sonde di temperatura acqua.

Massima pressione di esercizio dello scambiatore: 10 bar lato acqua e 45 bar lato refrigerante.

Scambiatore esterno

Scambiatore ad espansione diretta del tipo a piastre saldobrasate in acciaio inox AISI 316, in pacco senza guarnizioni utilizzando il rame come materiale di brasatura, a basso contenuto di refrigerante ed elevata superficie di scambio, completo di:

- isolamento termico esterno anticondensa di spessore 9,5 mm, in elastomero espanso estruso a celle chiuse
- pressostato differenziale lato acqua;
- sonde di temperatura acqua.

Massima pressione di esercizio dello scambiatore: 10 bar lato acqua e 45 bar lato refrigerante.

Circuito frigorifero

Due circuiti frigoriferi indipendenti e realizzati in rame, assemblati in fabbrica, e saldati con soluzione di continuità metallica, completi di:

- filtro deidratore a cartuccia solida antiacido ricambiabile;
- indicatore di passaggio del liquido e di umidità;
- valvola di espansione elettronica;
- valvola di inversione del ciclo a 4 vie
- pressostato di sicurezza alta pressione;
- trasduttore di bassa pressione;
- trasduttore di alta pressione;
- valvola di sicurezza per bassa pressione;
- valvola di sicurezza per alta pressione;
- rubinetto di intercettazione sulla linea del liquido;
- sonde di temperatura refrigerante.

Tubazione di aspirazione isolata termicamente con materiale isolante in elastomero a celle chiuse altamente flessibile a base di gomma EPDM.

Ogni circuito frigorifero testato a pressione per verificare eventuali perdite e fornito completo della carica di gas refrigerante.

Configurazioni costruttive

D - Recupero energetico parziale

BN - Configurazione acustica base

EN - Configurazione acustica supersilenziata

Ouadro elettrico

Completamente realizzato e cablato in conformità alla norma EN 60204. La sezione di potenza comprende:

- sezionatore generale blocco porta;
- morsetti alimentazione principale (400V/3Ph/50Hz);
- trasformatore di isolamento per l'alimentazione del circuito ausiliario (230V/24V);
- magnetotermico protezione compressore;
- · contattore comando compressore;
- doppio avvolgimento su compressore per riduzione corrente di spunto (per grandezze da 180.4 a 240.4).

La sezione di controllo comprende:

- terminale di interfaccia con display grafico;
- funzione di visualizzazione dei valori impostati, dei codici quasti e dell'indice parametri;
- tasti per ON/OFF e reset allarmi;
- regolazione proporzionale-integrale-derivativa della temperatura dell'acqua;
- programmatore giornaliero, settimanale del set point di temperatura e dell'accensione o spegnimento dell'unità;
- gestione accensione unità da locale o da remoto;
- protezione antigelo lato acqua;
- protezione e temporizzazione compressore;
- funzionalità di preallarme per antigelo acqua e per alta pressione gas refrigerante;
- sistema di autodiagnosi con visualizzazione immediata del codice guasto;
- controllo rotazione automatica avviamenti compressori;
- visualizzazione ore funzionamento compressore;
- ingresso comando ON/OFF a distanza;
- ingresso per comando HEAT/COOL a distanza;
- relè per la remotizzazione della segnalazione di allarme cumulativo;
- ingresso per demand limit (limitazione potenza assorbita in funzione di un segnale esterno 0÷10V);
- contatti puliti per stato compressori;
- ingresso digitale per abilitazione doppio set point;
- monitore di fase;
- ventilazione Quadro Elettrico;
- uscita segnale 0÷10V e contatto pulito per riscaldatore ausiliario;
- numerazione cavi quadri elettrici;
- predisposizione per gestione natural cooling (a cura del Cliente);
- predisposizione comando singola pompa ON/OFF o modulante lato utilizzo e lato sorgente.

Tutte le funzionalità del dispositivo possono essere replicate con un normale computer portatile collegato all'unità con un cavo di rete Ethernet e dotato di browser di navigazione internet. Tutte i cavi elettrici sono colorati e numerati in conformità con lo schema elettrico.

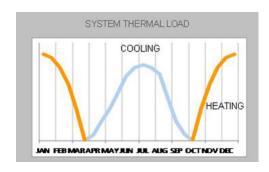
Accessori - Gruppo idronico

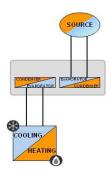
- VARYFLOW + (2 pompe inverter)
- Gruppo idronico con 1 pompa ON/OFF
- Gruppo idronico con 2 pompe ON/OFF
- HYDROPACK con 2 pompe
- Valvola 2 vie modulante
- Valvola 2 vie modulante per elevata pressione differenziale
- Valvola 3 vie modulante (accessorio fornito separatamente)
- Filtro meccanico a maglia in acciaio sul lato acqua (accessorio fornito separatamente). Nota: da posizionarsi in ingresso allo scambiatore. Si declina ogni responsabilità con decadimento della garanzia qualora non venga previsto un adeguato filtro meccanico all'interno dell'impianto.

Accessori

- Manometri di alta e bassa pressione
- Resistenza antigelo di protezione dello scambiatore interno
- Resistenze elettriche antigelo lato sorgente
- Rubinetto di intercettazione sulla mandata e sull'aspirazione dei compressori
- Coppia di valvole di intercettazione ad azionamento manuale (accessorio fornito separatamente)
- Condensatori di rifasamento (cosfi > 0.9)
- Funzionalità ECOSHARE per la gestione automatica di un gruppo di unità
- Dispositivo riduzione corrente di spunto
- Modulo di comunicazione seriale per supervisore BACnet
- Modulo di comunicazione seriale per supervisore Modbus
- Modulo di comunicazione seriale per supervisore LonWorks
- Controllo a distanza con comando a microprocessore remoto (accessorio fornito separatamente)
- Alimentatore di rete (accessorio fornito separatamente)
- Misuratore di energia
- Compensazione del set point con segnale 0-10 V
- Compensazione del set point con sonda aria esterna
- Supporti antivibranti (accessorio fornito separatamente)
- Rilevatore perdite refrigerante con funzionalità pump down montato nelle cofanature
- Controllo portata variabile lato utilizzo tramite inverter in funzione del salto termico
- Monitore di fase multifunzione
- Attacchi acqua posteriori (solo per configurazione acustica base)
- Valvola deviatrice ACS (accessorio fornito separatamente)

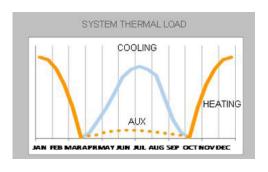
Collaudo

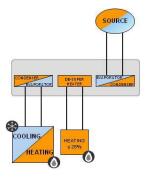

Unità sottoposta a collaudo funzionale in fabbrica a fine linea di produzione ed a prova di tenuta in pressione delle tubazioni del circuito frigorifero (con azoto ed idrogeno), prima della spedizione. In tutti i circuiti, dopo il collaudo, viene analizzato il contenuto di umidità presente, in modo da assicurare il rispetto dei limiti impostati dai costruttori dei diversi componenti.



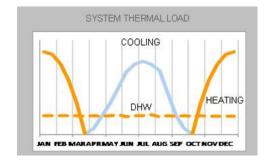
Soluzioni impiantistiche

Unità standard:

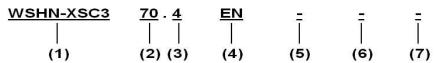

Produzione di acqua refrigerata o calda



Unità con opzione recupero energetico parziale:


- Produzione di acqua refrigerata o calda
- Produzione gratuita di acqua calda da recupero energetico parziale

Unità con accessorio valvola deviatrice ACS:


- Produzione di acqua refrigerata o calda
- ► Produzione prioritaria di acqua calda sanitaria, con valvola 3 vie

Configurazione Unità

(1) Serie

WSHN — Pompa di calore condensata ad acqua con compressore scroll XSC3 - Serie SPINchiller³

(2) Grandezza

70 - Potenza nominale compressore in HP

(3) Compressor

4 - Quantità compressori

(4) Configurazione acustica

EN - Configurazione acustica supersilenziata (standard)

BN - Configurazione acustica base

(5) Recupero calore condensazione

(-) non richiesto (standard)

D - Recupero energetico parziale (25% del calore disponibile)

(6) Gruppo idronico lato utilizzo

(-) non richiesto (standard)

VARYU - Varyflow + (2 pompe inverter lato utilizzo)

HYGU1 - Gruppo idronico lato utilizzo con una pompa ON/OFF

HYGU2 - Gruppo idronico lato utilizzo con due pompe ON/OFF

HYP2U - Hydropack lato utilizzo con 2 pompe

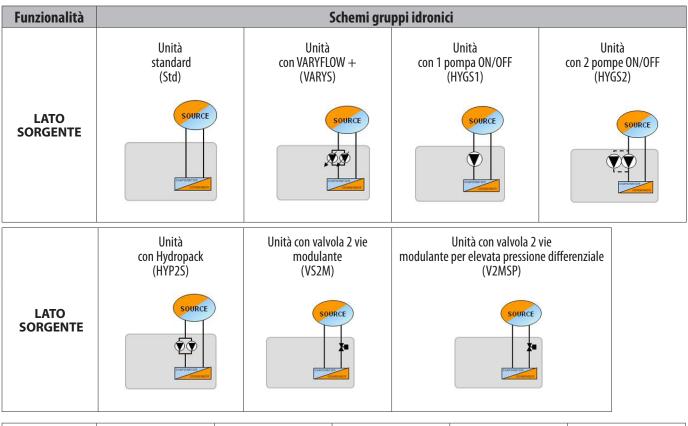
(7) Gruppo idronico lato sorgente

(-) non richiesto (standard)

VARYS - Varyflow + (2 pompe inverter lato sorgente)

HYGS1 - Gruppo idronico lato sorgente con una pompa ON/OFF

HYGS2 - Gruppo idronico lato sorgente con due pompe ON/OFF


HYP2S - Hydropack lato sorgente con 2 pompe


VS2M - Valvola 2 vie modulante lato sorgente

V2MSP - Valvola 2 vie modulante lato sorgente per elevata pressione differenziale

N.B: Per il corretto funzionamento dell'unità è necessario che le temperature dell'acqua in uscita lato utilizzo e sorgente rimangano all'interno dei limiti di funzionamento indicati.

Se al variare delle condizioni di funzionamento è necessario variare sensibilmente la portata d'acqua o se la portata d'acqua di progetto è prossima al limite minimo indicato nella tabella "Portate d'acqua ammissibili" è obbligatorio dotare l'unità di un organo di modulazione della portata lato sorgente. Organo di modulazione che può essere fornito da Clivet o sarà a cura del Cliente che dovrà inoltre predisporne il collegamento all'unità.

Dati tecnici generali - Prestazioni

Grandezze			70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
Raffreddamento																
Potenzialità frigorifera	1	[kW]	212	226	243	262	285	313	342	391	445	498	557	612	669	720
Potenza assorbita compressori	1	[kW]	47,2	51,1	54,0	59,2	63,6	69,4	76,6	85,2	97,4	110	124	136	149	164
Potenza assorbita totale	2	[kW]	47,3	51,2	54,1	59,3	63,7	69,5	76,7	85,3	97,5	110	124	136	149	164
Potenza termica recupero parziale	3	[kW]	41,5	44,3	47,4	51,4	55,7	61,2	67,0	76,1	86,7	97,2	109	120	131	141
EER	1	-	4,50	4,41	4,49	4,43	4,47	4,51	4,47	4,59	4,56	4,54	4,48	4,50	4,48	4,40
Portata acqua lato utilizzo	1	[l/s]	10,1	10,8	11,6	12,5	13,6	15,0	16,4	18,7	21,2	23,8	26,6	29,3	31,9	34,4
Perdite di carico lato utilizzo	1	[kPa]	21	24	23	26	26	28	33	31	31	38	39	38	37	38
Portata acqua lato sorgente	1	[l/s]	12,4	13,2	14,2	15,4	16,6	18,3	20,0	22,7	25,9	29,0	32,5	35,7	39,1	42,2
Perdite di carico lato sorgente	1	[kPa]	31	35	34	39	37	40	48	45	46	55	56	54	54	53
Potenza frigorifera (EN14511:2013)	4	[kW]	211	225	242	261	283	313	341	389	443	496	555	610	666	717
Potenza assorbita totale (EN14511:2013)	4	[kW]	48,5	52,6	55,4	60,9	65,6	70,7	78,1	87,3	99,8	112	127	139	153	168
EER (EN 14511:2013)	4	-	4,36	4,28	4,36	4,29	4,32	4,42	4,37	4,46	4,44	4,42	4,36	4,38	4,36	4,27
SEER	8		5,95	5,89	5,84	5,90	5,92	5,65	5,40	5,92	5,90	5,88	5,89	5,88	5,88	5,89
Potenza frigorifera (AHRI 550/590)	5	[kW]	213	227	243	263	286	314	344	392	446	500	559	614	671	723
Potenza assorbita totale (AHRI 550/590)	5	[kW]	46,2	50,2	52,9	58,1	62,4	68,1	75,2	83,6	95,6	108	122	133	146	160
COP _R	5		4,61	4,52	4,59	4,53	4,58	4,61	4,57	4,69	4,67	4,63	4,58	4,62	4,60	4,52
IPLV	5		6,51	6,50	6,51	6,52	6,47	6,46	6,35	6,42	6,45	6,21	6,35	6,30	6,18	6,08
Riscaldamento																
Potenza termica	6	[kW]	243	259	278	301	326	357	393	445	507	568	639	702	769	831
Potenza assorbita compressori	6	[kW]	57,3	62,0	65,6	72,0	77,4	84,8	92,8	104	118	132	151	165	181	200
Potenza assorbita totale	2	[kW]	57,4	62,1	65,7	72,1	77,5	84,9	92,9	104	118	132	151	165	182	200
COP	6	-	4,24	4,18	4,24	4,18	4,21	4,22	4,23	4,29	4,31	4,32	4,22	4,26	4,24	4,16
Portata acqua lato utilizzo	6	[l/s]	11,6	12,4	13,3	14,4	15,6	17,1	18,8	21,3	24,2	27,1	30,5	33,5	36,7	39,7
Perdite di carico lato utilizzo	6	[kPa]	27,8	31,3	29,6	34,3	33,2	35,4	38,4	39,2	40,5	48,6	50,0	48,4	47,9	47,3
Portata acqua lato sorgente	6	[l/s]	8,88	9,42	10,2	10,9	11,9	13,0	14,3	16,3	18,6	20,9	23,3	25,7	28,1	30,1
Perdite di carico lato sorgente	6	[kPa]	16,8	18,8	17,7	20,4	19,8	21,1	23,0	23,7	24,5	29,8	30,2	29,4	28,9	28,2
Potenza termica (EN14511:2013)	7	[kW]	244	260	279	302	327	358	393	446	508	570	641	704	771	833
Potenza assorbita totale (EN14511:2013)	7	[kW]	59,0	64,0	67,6	74,3	80,3	86,5	94,9	107	121	135	156	170	187	206
COP (EN 14511:2013)	7	-	4,13	4,06	4,13	4,06	4,08	4,14	4,15	4,18	4,19	4,20	4,11	4,15	4,13	4,04
SCOP - Clima MEDIO - W55	8		4,72	4,67	4,72	4,67	4,41	4,77	4,70	-	-	-	-	-	-	-

Il Prodotto rispetta la Direttiva Europea ErP (Energy Related Products), che comprende il Regolamento delegato (UE) N. 811/2013 della Commissione (potenza termica nominale ≤ 70 kW alle condizioni di riferimento specificate), il Regolamento delegato (UE) N. 813/2013 della Commissione (potenza termica nominale ≤ 400 kW alle condizioni di riferimento specificate) e il regolamento delegato (UE) N. 2016/2281 della Commissione, noto anche come Ecodesign Lot21.

«Contiene gas fluorurati a effetto serra» (GWP 2087,5)

- 1. Dati riferiti alle seguenti condizioni: Temperatura acqua scambiatore interno = 12/7 °C. Temperatura acqua scambiatore esterno = 30/35 °C. Fattore di incrostazione evaporatore = 0.44 x 10^(-4) m² K/W
- 2. La Potenza Assorbita Totale non tiene conto della quota parte relativa alle pompe e necessaria per vincere le perdite di carico per la circolazione della soluzione all'interno degli scambiatori.
- $3. \quad \text{Opzione. Acqua scambiatore sorgente} = 30/35^{\circ}\text{C} \text{Acqua scambiatore di recupero} = 40/45^{\circ}\text{C} \text{Acqua scambiatore utilizzo} = 7^{\circ}\text{C}$
- 4. Dati calcolati in conformità alla Norma EN 14511:2013 riferiti alle seguenti condizioni: Temperatura acqua scambiatore interno = 12/7 °C. Temperatura acqua scambiatore esterno = 30/35°C
- 5. Dati calcolati in conformità alla norma AHRI 550/590 alle seguenti condizioni: acqua scambiatore interno 6,7°C. Portata acqua 0,043 l/s per kW. Aria entrante allo scambiatore esterno 35°C, Fattore di incrostazione evaporatore = 0,18 x 10^(-4) m2 K/W
- 6. Dati inferiti alle seguenti condizioni: Temperatura acqua scambiatore interno = 40/45 °C. Temperatura acqua scambiatore esterno = 10/7 °C. Fattore di incrostazione evaporatore = 0.44 x 10 ^ (-4) m² K/W
- 7. Dati calcolati in conformità alla Norma EN 14511:2013 riferiti alle seguenti condizioni: Temperatura acqua scambiatore interno = 40/45 °C. Temperatura acqua scambiatore esterno = 10/7 °C.
- 8. Dati calcolati in conformità alla Norma EN 14825:2016

Dati tecnici generali - Caratteristiche costruttive

Grandezze			70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
Compressore																
Tipo compressori		-							SCR	OLL						
Refrigerante		-							R-4	10A						
N° compressori		Nr	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Potenza nominale (C1)		[HP]	35	35	40	40	45	50	55	60	70	80	90	100	100	120
Potenza nominale (C2)		[HP]	35	40	40	45	45	50	55	60	70	80	90	100	120	120
Gradini capacità Std		Nr	6	6	6	6	6	6	6	4	6	4	6	6	6	4
Carica olio (C1)		[1]	8	8	10	12	11	11	13	13	13	13	13	13	13	13
Carica olio (C2)		[1]	8	10	10	12	11	11	13	13	13	13	13	13	13	13
Carica refrigerante (C1)	1	[kg]	14,0	14,0	16,5	17,5	18,0	16,0	20,0	21,0	24,0	26,0	28,0	33,0	33,0	37,0
Carica refrigerante (C2)	1	[kg]	14,0	16,5	16,5	17,5	18,0	16,0	20,0	21,0	24,0	26,0	28,0	33,0	37,0	37,0
Circuiti refrigeranti		Nr	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Scambiatore utilizzo		·							•				•			
Numero scambiatori		Nr	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Tipo scambiatore interno	2	-							P	HE						
Contenuto acqua		[1]	19,4	19,4	22,2	22,2	26,7	29,5	31,2	44,2	49,4	48,1	55,5	62,9	67,3	74,7
Contenuto minimo acqua impianto	3	[1]	1170	1140	1120	1120	1130	1570	1990	2550	2430	3250	2280	3090	2930	4770
Scambiatore sorgente																
Numero scambiatori		Nr	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Tipo scambiatore interno	2	-							Р	HE						
Contenuto acqua		[1]	19,4	19,4	22,2	22,2	26,7	29,5	31,2	44,2	49,4	48,1	55,5	62,9	67,3	74,7
Connessioni																
Attacchi acqua		-	4''	4''	4''	4''	4''	4''	4"	5''	5''	5"	5"	5"	5"	5''
Alimentazione																
Alimentazione standard		V	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Dati elettrici																
F.L.A Totale		A	135,0	143,4	151,8	166,2	180,6	191,9	208,7	237,5	266,5	295,5	346,9	375,9	416,1	456,3
F.L.I Totale		kW	79,3	84,1	88,9	97,7	106,5	117,4	127,0	144,6	165,8	187,0	212,6	233,8	257,2	280,6
M.I.C Valore	4	A	323,2	370,2	378,6	416,6	431,0	442,3	459,1	487,9	586,4	615,4	616,6	645,6	685,8	726,0
M.I.C con accessorio soft start	4	A	226,0	237,4	245,8	278,8	293,2	304,5	321,3	350,1	414,4	443,4	-	-	-	-

^{1.} Valori indicativi per unità standard con possibile variazione +/-10%. I dati effettivi sono riportati nell'etichetta matricolare dell'unità

^{2.} PHE = scambiatore a piastre

^{3.} Il valore calcolato di volume minimo d'acqua all'impianto non considera il volume d'acqua contenuto nello scambiatore interno. Con applicazioni a bassa temperatura aria esterna o bassi carichi medi richiesti, il volume minimo d'acqua all'impianto si ottiene raddoppiando il valore indicato

^{4.} M.I.C.=Massima corrente di spunto dell'unità. Il M.I.C. si ottiene sommando la massima corrente di spunto del compressore di taglia superiore e le correnti assorbite alle massime condizioni ammesse (F.L.A.) dei rimanenti componenti elettrici.

Livelli sonori

Configurazione supersilenziata EN (standard)

				Livello di Pote	nza Sonora (dB)				Livello di	Livello di
Grandezze				Bande d'o	ottava (Hz)				Pressione Sonora	Potenza Sonora
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
70.4	57	70	75	76	75	76	67	66	63	81
75.4	57	68	75	76	77	77	69	68	64	82
80.4	57	66	75	76	78	78	70	70	65	83
85.4	57	66	75	77	79	78	70	69	65	83
90.4	57	66	75	78	79	77	70	69	65	83
100.4	57	70	78	79	80	79	70	67	66	84
110.4	57	67	78	79	81	80	72	71	68	85
120.4	57	67	78	80	82	80	72	70	68	86
140.4	57	66	79	81	85	83	73	71	70	88
160.4	57	66	80	81	86	84	74	71	72	90
180.4	57	76	94	80	82	81	76	74	71	89
200.4	57	76	94	81	85	83	76	74	72	90
220.4	57	78	95	81	83	83	77	75	72	90
240.4	57	79	97	81	82	82	78	76	73	91

Livelli sonori si riferiscono ad unità a pieno carico, nelle condizioni nominali di prova.

Il livello di pressione sonora è riferito ad 1m di distanza dalla superficie esterna dell'unità funzionante in campo aperto.

Livelli di potenza sonora determinati mediante il metodo intensimetrico (UNI EN ISO 9614-2)

Dati riferiti alle seguenti condizioni:

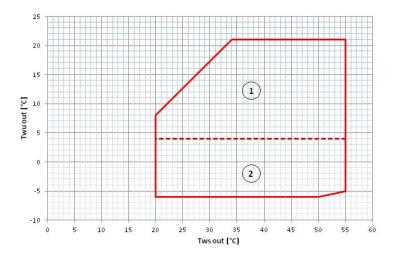
Acqua ingresso / uscita scambiatore lato utilizzo 12/7 °C

Acqua ingresso / uscita scambiatore lato sorgente 30/35 °C

Configurazione acustica base BN

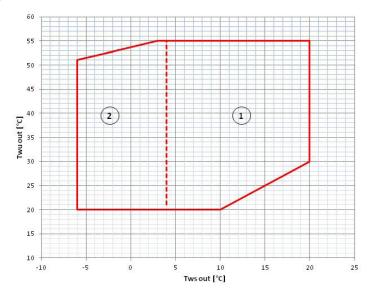
				Livello di Pote	nza Sonora (dB)				Livello di Pressione	Livello di Potenza
Grandezze				Bande d'o	ottava (Hz)				Sonora	Sonora
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
70.4	48	69	79	81	82	85	78	71	71	89
75.4	48	67	79	81	84	86	80	73	72	90
80.4	48	65	79	81	85	87	81	75	73	91
85.4	48	65	79	82	86	87	81	74	73	91
90.4	48	65	79	83	86	86	81	74	73	91
100.4	48	69	82	84	87	88	81	72	74	92
110.4	48	66	82	84	88	89	83	76	76	93
120.4	48	66	82	85	89	89	83	75	76	94
140.4	48	65	83	86	92	92	84	76	78	96
160.4	48	65	84	86	93	93	85	76	79	97
180.4	49	76	99	86	90	91	88	80	79	97
200.4	49	76	99	87	93	93	88	80	80	98
220.4	49	78	100	87	91	93	89	81	80	98
240.4	49	79	102	87	90	92	90	82	80	98

Livelli sonori si riferiscono ad unità a pieno carico, nelle condizioni nominali di prova. Il livello di pressione sonora è riferito ad 1m di distanza dalla superficie esterna dell'unità funzionante in campo aperto. Livelli di potenza sonora determinati mediante il metodo intensimetrico (UNI EN ISO 9614-2)


Dati riferiti alle seguenti condizioni:

Acqua ingresso / uscita scambiatore lato utilizzo 12/7 °C

Acqua ingresso / uscita scambiatore lato sorgente 30/35 °C


Campi di impiego - Raffreddamento

Twu out [°C] = Temperatura acqua in uscita lato utilizzo Tws out [°C] = Temperatura acqua in uscita lato sorgente I limiti sono riferiti a DT=5°C sia lato utilizzo sia lato sorgente

- 1. Campo di funzionamento normale
- 2. Campo di funzionamento dove è obbligatorio l'utilizzo di miscela acqua e glicole in funzione della temperatura dell'acqua in uscita dallo scambiatore lato freddo

Campi di impiego - Riscaldamento

Twu out [°C] = Temperatura acqua in uscita lato utilizzo / caldo Tws out [°C] = Temperatura acqua in uscita lato sorgente / freddo l limiti sono riferiti a DT=5°C sia lato utilizzo sia lato sorgente

- 1. Campo di funzionamento normale
- 2. Campo di funzionamento dove è obbligatorio l'utilizzo di miscela acqua e glicole in funzione della temperatura dell'acqua in uscita dallo scambiatore lato freddo

Portate d'acqua ammissibili

Portate di acqua minima (Qmin) e massima (Qmax) ammissibili per il corretto funzionamento dell'unità

	Grandezze		70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
Lata assuments	Qmin	[l/s]	6	6	7	7	8	9	9	10	11	12	13	14	16	17
Lato sorgente	Qmax	[l/s]	21	21	23	23	26	28	29	33	35	37	39	45	49	53
Lata utiliana	Qmin	[l/s]	6	6	7	7	8	9	9	10	11	12	13	14	16	17
Lato utilizzo	Qmax	[l/s]	21	21	23	23	26	28	29	33	35	37	39	45	49	53

Fattori di correzione per impiego con glicole

0/ 1/ 1/ 1/ 1		F0/	400/	450/	200/	250/	200/	3.50/	400/	450/	F00/
% peso glicole etilenico		5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
Temperatura congelamento	°C	-2,0	-3,9	-6,5	-8,9	-11,8	-15,6	-19,0	-23,4	-27,8	-32,7
Temperatura di sicurezza	°C	3	1	-1	-4	-6	-10	-14	-19	-24	-30
Fattore Potenzialità frigorifera scambiatore interno	-	0,995	0,990	0,985	0,981	0,977	0,974	0,971	0,968	0,966	0,964
Fattore Potenza assorbita compressore scambiatore interno	-	0,997	0,993	0,990	0,988	0,986	0,984	0,982	0,981	0,980	0,979
Fattore Portata soluzione glicolata scambiatore interno	-	1,003	1,010	1,020	1,033	1,050	1,072	1,095	1,124	1,156	1,192
Fattore Perdite di carico scambiatore interno	-	1,029	1,060	1,090	1,118	1,149	1,182	1,211	1,243	1,272	1,302
Fattore Potenzialità frigorifera scambiatore esterno	-	0,999	0,997	0,995	0,992	0,989	0,986	0,983	0,979	0,975	0,971
Fattore Potenza assorbita compressore scambiatore esterno	-	1,003	1,006	1,009	1,012	1,016	1,021	1,026	1,031	1,038	1,044
Fattore Portata soluzione glicolata scambiatore esterno	-	1,004	1,011	1,020	1,031	1,043	1,056	1,071	1,088	1,107	1,128
Fattore Perdite di carico scambiatore esterno	-	1,027	1,062	1,103	1,149	1,200	1,256	1,318	1,387	1,466	1,550

I fattori di correzione riportati si riferiscono a miscele di acqua e glicole etilenico utilizzate per prevenire la formazione di ghiaccio negli scambiatori collegati al circuito idraulico durante la fermata invernale.

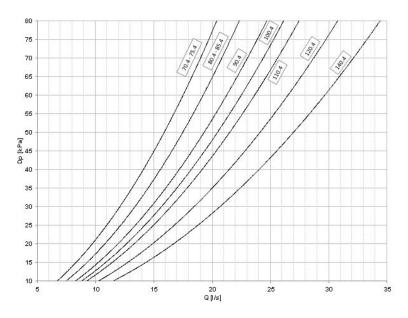
Fattori di correzione incrostazioni

	Scambiato	ore interno	Scambiato	ore esterno
m2°C/W	F1	FK1	F2	FK2
0.44 x 10 (-4)	1,0	1,0	1,0	1,0
0.88 x 10 (-4)	0,97	0,99	0,97	1,08
1.76 x 10 (-4)	0,94	0,98	0,92	1,05

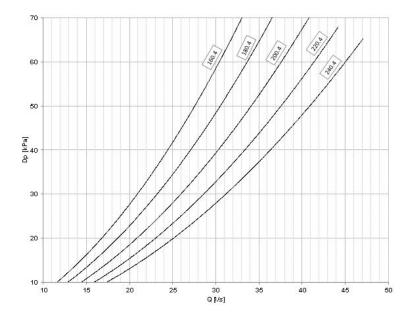
 $^{{\}sf F1} = {\sf Fattore} \ {\sf correzione} \ {\sf potenza} \ {\sf frigorifera}$

Tarature protezioni e controlli

raratare protezioni e com				
		Intervento	Riarmo	Valore
Pressostato di alta pressione (lato gas)	[kPa]	4050	3300	-
Allarme di bassa pressione (lato gas)	[kPa]	450	600	-
Protezione antigelo	[°C]	4	6	-
Valvola di sicurezza alta pressione (lato gas)	[kPa]	-	-	4500
Valvola di sicurezza bassa pressione (lato gas)	[kPa]	-	-	3000
Max n° avviamenti del compressore per ora (lato gas)	[n°]	-	-	10
Pressostato differenziale (lato acqua)	[kPa]	8	10,5	-
Massima pressione senza gruppo idronico (lato acqua)	[kPa]	-	-	1000
Massima pressione con gruppo idronico (lato acqua)	[kPa]	-	-	600
Taratura valvola di sicurezza (lato acqua) (1)	[kPa]	-	-	600


⁽¹⁾ Disponibile solo con opzione gruppo idronico

FK1 = Fattore correzione potenza assorbita dai compressori



Perdite di carico lato utilizzo e lato sorgente

Grandezze 70.4 - 140.4

Grandezze 160.4 - 240.4

Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di 7° C.

Q = portata acqua (I/s) DP = perdita di carico [kPa]

La portata d'acqua può essere calcolata con la seguente formula

 $Q[I/s] = kWf/(4,186 \times DT)$

 $kWf = Potenza\ frigorifera\ in\ kW$

DT = Differenza tra temperatura acqua ingresso / uscita

Alle perdite di carico dello scambiatore interno devono essere sommate anche le perdite di carico del filtro meccanico a maglia d'acciaio che deve essere posizionato sulla linea di ingresso dell'acqua. Si tratta di un dispositivo obbligatorio per il corretto funzionamento dell'unità, ed è disponibile come opzione Clivet (si veda la sezione ACCESSORI GRUPPO IDRONICO). Nei casi in cui il filtro meccanico venga selezionato ed installato dal Cliente, è vietato l'uso di filtri con passo della maglia superiore a 1,6 mm, che possono causare un cattivo funzionamento dell'unità ed il suo danneggiamento anche grave.

Prestazioni in raffreddamento

						1	emperatura	acqua ingres	so lato sorge	nte / caldo (°C	:)			
The color	Grandezze	To (°C)	2	25	3	0	3	5	4	10	4	5	5	0
1			kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe
1940 2444 415 2346 4865 2346 2366 2367 2368 2367 2368 2465 179 722 723 1868 2465 2468 2468 236		5	209	42.4	200	46.7	189	51.5	174	57.3	159	63.0	151	70.8
10.4 12 299 443 248 485 224 314 216 393 398 651 191 272 272 185 284 285 284 285		7	222	42.8	212	47.2	200	52.0	184	57.7	169	63.5	161	71.2
12 239 439 248 48.5 224 334 216 933 198 63.1 191 72.7	70.4	10	244	43.5	234	48.0	220	52.8	203	58.7	186	64.5	179	72.1
188	70.4	12	259	43.9	248	48.5	234	53.4	216	59.3	198	65.1	191	72.7
7.			283	44.5										
7. 226														
10														
175.4														
15 299	75.4													
18														
S														
80.4 7 254 49.0 2243 54.0 228 59.6 2211 66.0 193 72.5 183 80.7 10 279 49.6 26.6 54.8 251 60.5 222 66.9 213 73.4 231 83.1 15 322 59.7 30.0 55.1 291 61.0 240 65.5 247 75.1 291 83.1 18 - - 33.0 55.0 317 62.8 238 247 75.1 299 68.5 247 75.1 299 83.1 4 10 301 36.0 282 247 66.4 21 77.5 229 07.7 214 83.1 84.2 23.1 66.4 290 75.5 229 07.7 221 88.7 228 83.1 83.1 83.1 83.1 83.1 83.1 83.1 83.1 83.1 83.1 83.1 83.1														
100 279														
12														
15 322 50.7 308 56.1 291 61.9 269 68.5 247 75.1 239 83.1 18	80.4													
18														
S														
85.4 7 274 53.7 262 59.2 247 65.3 227 72.4 208 79.6 199 88.7 10 301 546 228 60.2 271 66.4 250 73.5 229 80.7 221 89.7 15 348 56.1 332 61.9 313 68.2 289 75.5 265 82.8 258 91.5 18 - 362 67.9 341 69.4 315 76.8 289 843 3284 92.8 7 298 57.8 285 63.6 268 70.1 247 77.9 226 85.7 215 95.6 10 327 58.8 313 64.8 295 71.4 272 79.1 240 86.9 239 96.8 10 327 58.8 313 64.8 275 317 72.4 32.2 79.1 240 86.9			258	53.2										
10														
12 319 55.2 304 60.9 287 67.1 265 74.3 243 81.4 225 90.4 15 348 56.1 332 61.9 313 68.2 229 75.5 265 82.8 258 91.5 18 -														
18	85.4	12	319		304	60.9	287	67.1	265	74.3	243	81.4	235	90.4
90.4 5 280 57.2 267 63.0 252 69.5 232 77.2 213 85.0 202 95.0 7 298 57.8 285 63.6 268 70.1 247 77.9 226 85.7 215 95.6 10 327 58.8 313 64.8 295 71.4 272 79.1 249 86.9 239 96.8 12 346 59.5 331 65.5 312 72.2 288 80.0 264 87.7 255 97.6 15 377 60.4 361 66.7 341 73.5 314 81.3 288 89.2 281 99.1 18 -		15	348	56.1	332	61.9	313	68.2	289	75.5	265	82.8	258	91.5
90.4 7 298 57.8 285 63.6 268 70.1 247 77.9 226 85.7 215 95.6 10 327 58.8 313 64.8 295 71.4 272 79.1 249 86.9 239 96.8 12 346 59.5 331 66.5 312 72.2 288 80.0 264 87.7 255 97.6 15 377 60.4 361 66.7 341 73.5 314 81.3 288 89.2 281 99.1 18 - - 394 66.8 277 75.9 256 84.9 235 93.8 227 107 7 327 63.2 313 69.4 296 76.5 273 85.4 250 94.4 243 107 100.4 361 64.3 344 70.6 324 77.4 300 86.4 275 95.3		18	-	-	362	62.9	341	69.4	315	76.8	289	84.3	284	92.8
90.4 10 327 58.8 313 64.8 295 71.4 272 79.1 249 86.9 239 96.8 12 346 59.5 3311 65.5 312 72.2 228 80.0 264 87.7 255 97.6 18 -		5	280	57.2	267	63.0	252	69.5	232	77.2	213	85.0	202	95.0
12 346 59.5 331 65.5 312 72.2 288 80.0 264 87.7 255 97.6 15 377 60.4 361 66.7 341 73.5 314 81.3 288 89.2 281 99.1 18 - - 394 67.8 371 74.8 342 82.8 314 90.8 309 101 18 - - 394 67.8 371 74.8 342 82.8 314 90.8 309 101 19 307 62.6 294 68.8 277 75.9 256 84.9 235 93.8 227 107 10 361 64.3 344 70.6 324 77.4 300 86.4 275 95.3 269 108 10 361 64.3 344 70.6 324 77.4 300 86.4 275 95.3 269 108 12 334 65.1 366 71.3 346 78.2 320 87.1 294 96.1 288 109 15 421 66.2 401 72.4 379 79.5 351 88.4 322 97.4 318 110 18 - - 438 73.6 413 80.8 382 89.7 351 98.7 349 111 18 - - 438 77.6 323 84.2 299 93.3 275 102 262 115 10 379 70.4 362 77.2 341 84.8 317 93.9 292 103 280 115 12 400 71.1 385 78.0 363 85.5 339 94.5 314 104 302 116 18 - - 455 80.2 431 87.7 402 96.7 373 106 361 118 18 - - 455 80.2 431 87.7 402 96.7 373 106 361 118 19 457 77.7 391 85.2 367 94.1 338 105 309 116 295 129 10 451 77.4 430 87.0 405 95.5 373 106 341 117 327 131 12 481 80.7 459 88.2 432 432 96.7 398 107 364 118 351 132 14 44 47 480 87.0 405 95.5 373 106 341 117 327 314 14 48 87.7 466 88.1 445 97.4 419 107 386 119 333 117 314 144 14 41 42 544 93.3 520 101 491 111 452 122 414 134 399 149 140.4 151 597 96.1 570 104 537 113 496 125 454 137 440 151		7	298	57.8	285	63.6	268	70.1	247	77.9	226	85.7	215	95.6
12 346 59.5 331 65.5 312 72.2 288 80.0 264 87.7 25.5 97.6 18	00.4	10	327	58.8	313	64.8	295	71.4	272	79.1	249	86.9	239	96.8
18	90.4	12	346	59.5	331	65.5	312	72.2	288	80.0	264	87.7	255	97.6
100.4		15	377	60.4	361	66.7	341	73.5	314	81.3	288	89.2	281	99.1
100.4 100.		18	-	-	394	67.8	371	74.8	342	82.8	314	90.8	309	101
100.4 100 361 64.3 344 70.6 324 77.4 300 86.4 275 95.3 269 108 12 384 65.1 366 71.3 346 78.2 320 87.1 294 96.1 288 109 15 421 66.2 401 72.4 379 79.5 351 88.4 322 97.4 318 110 18 - -		5	307	62.6	294	68.8	277	75.9	256	84.9	235	93.8	227	107
100.4 12 384 65.1 366 71.3 346 78.2 320 87.1 294 96.1 288 109 15 421 66.2 401 72.4 379 79.5 351 88.4 322 97.4 318 110 18 7 438 73.6 413 80.8 382 89.7 351 98.7 349 111 111 1452 122 414 134 399 149 115 125 44 1134 399 149 115 15 597 96.1 570 104 537 113 496 125 454 137 440 151 151 151 151 151 151 151 151 151 151 151 151 155 161 151 151 151 155 161 155 101 170 104 151 151 155 157 98.7 102 262 115 115 1274 128 12		7	327	63.2	313	69.4	296	76.5	273	85.4	250	94.4	243	107
12 384 65.1 366 71.3 346 78.2 320 87.1 294 96.1 288 109 15 421 66.2 401 72.4 379 79.5 351 88.4 322 97.4 318 110 18 -	100.4													
18														
110.4			421	66.2										
110.4 110.4 10 379 70.4 362 77.2 341 84.8 317 93.9 292 103 280 115 12 400 71.1 385 78.0 363 85.5 339 94.5 314 104 302 116 15 437 72.2 421 79.2 398 86.6 372 95.6 345 105 333 117 18 455 80.2 431 87.7 402 96.7 373 106 361 118 5 382 76.7 365 84.3 343 93.2 316 104 289 115 274 128 7 410 77.7 391 85.2 367 94.1 338 105 309 116 295 129 10 451 79.4 430 87.0 405 95.5 373 106 341 117 327 131 12 481 80.7 459 88.2 432 96.7 398 107 364 118 351 132 15 528 82.6 504 90.2 474 98.8 437 110 399 120 389 134 18 548 92.2 515 101 475 112 434 123 426 136 18 7 466 89.1 445 97.4 419 107 386 119 353 131 336 145 10 511 91.5 488 99.8 460 109 424 121 388 133 372 147 12 544 93.3 520 101 491 111 452 122 414 134 399 149 15 597 96.1 570 104 537 113 496 125 454 137 440 151														
110.4 10 379 70.4 362 77.2 341 84.8 317 93.9 292 103 280 115 12 400 71.1 385 78.0 363 85.5 339 94.5 314 104 302 116 15 437 72.2 421 79.2 398 86.6 372 95.6 345 105 333 117 18 - - 455 80.2 431 87.7 402 96.7 373 106 361 118 7 410 77.7 365 84.3 343 93.2 316 104 289 115 274 128 7 410 77.7 391 85.2 367 94.1 338 105 309 116 295 129 10.4 451 79.4 430 87.0 405 95.5 373 106 341 117 327<														
110.4 12 400 71.1 385 78.0 363 85.5 339 94.5 314 104 302 116 15 437 72.2 421 79.2 398 86.6 372 95.6 345 105 333 117 18 - - 455 80.2 431 87.7 402 96.7 373 106 361 118 5 382 76.7 365 84.3 343 93.2 316 104 289 115 274 128 7 410 77.7 391 85.2 367 94.1 338 105 309 116 295 129 10 451 79.4 430 87.0 405 95.5 373 106 341 117 327 131 120.4 481 80.7 459 88.2 432 96.7 398 107 364 118 351<														
15	110.4													
18														
120.4 5 382 76.7 365 84.3 343 93.2 316 104 289 115 274 128 7 410 77.7 391 85.2 367 94.1 338 105 309 116 295 129 10 451 79.4 430 87.0 405 95.5 373 106 341 117 327 131 12 481 80.7 459 88.2 432 96.7 398 107 364 118 351 132 15 528 82.6 504 90.2 474 98.8 437 110 399 120 389 134 18 - - 548 92.2 515 101 475 112 434 123 426 136 5 436 87.7 416 96.1 392 106 361 118 331 129 314														
120.4 7 410 77.7 391 85.2 367 94.1 338 105 309 116 295 129 10 451 79.4 430 87.0 405 95.5 373 106 341 117 327 131 12 481 80.7 459 88.2 432 96.7 398 107 364 118 351 132 15 528 82.6 504 90.2 474 98.8 437 110 399 120 389 134 18 - - 548 92.2 515 101 475 112 434 123 426 136 18 - - 548 92.2 515 101 475 112 434 123 426 136 19 5 436 87.7 416 96.1 392 106 361 118 331 129 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
120.4 10 451 79.4 430 87.0 405 95.5 373 106 341 117 327 131 12 481 80.7 459 88.2 432 96.7 398 107 364 118 351 132 15 528 82.6 504 90.2 474 98.8 437 110 399 120 389 134 18 - - 548 92.2 515 101 475 112 434 123 426 136 5 436 87.7 416 96.1 392 106 361 118 331 129 314 144 7 466 89.1 445 97.4 419 107 386 119 353 131 336 145 10 511 91.5 488 99.8 460 109 424 121 388 133 372														
120.4 12 481 80.7 459 88.2 432 96.7 398 107 364 118 351 132 15 528 82.6 504 90.2 474 98.8 437 110 399 120 389 134 18 - - 548 92.2 515 101 475 112 434 123 426 136 5 436 87.7 416 96.1 392 106 361 118 331 129 314 144 7 466 89.1 445 97.4 419 107 386 119 353 131 336 145 10 511 91.5 488 99.8 460 109 424 121 388 133 372 147 12 544 93.3 520 101 491 111 452 122 414 134 399														
15 528 82.6 504 90.2 474 98.8 437 110 399 120 389 134 18 548 92.2 515 101 475 112 434 123 426 136 5 436 87.7 416 96.1 392 106 361 118 331 129 314 144 7 466 89.1 445 97.4 419 107 386 119 353 131 336 145 10 511 91.5 488 99.8 460 109 424 121 388 133 372 147 12 544 93.3 520 101 491 111 452 122 414 134 399 149 15 597 96.1 570 104 537 113 496 125 454 137 440 151	120.4													
18 - - 548 92.2 515 101 475 112 434 123 426 136 5 436 87.7 416 96.1 392 106 361 118 331 129 314 144 7 466 89.1 445 97.4 419 107 386 119 353 131 336 145 10 511 91.5 488 99.8 460 109 424 121 388 133 372 147 12 544 93.3 520 101 491 111 452 122 414 134 399 149 15 597 96.1 570 104 537 113 496 125 454 137 440 151														
140.4 5 436 87.7 416 96.1 392 106 361 118 331 129 314 144 7 466 89.1 445 97.4 419 107 386 119 353 131 336 145 10 511 91.5 488 99.8 460 109 424 121 388 133 372 147 12 544 93.3 520 101 491 111 452 122 414 134 399 149 15 597 96.1 570 104 537 113 496 125 454 137 440 151														
7 466 89.1 445 97.4 419 107 386 119 353 131 336 145 10 511 91.5 488 99.8 460 109 424 121 388 133 372 147 12 544 93.3 520 101 491 111 452 122 414 134 399 149 15 597 96.1 570 104 537 113 496 125 454 137 440 151														
140.4 10 511 91.5 488 99.8 460 109 424 121 388 133 372 147 12 544 93.3 520 101 491 111 452 122 414 134 399 149 15 597 96.1 570 104 537 113 496 125 454 137 440 151														
140.4 12 544 93.3 520 101 491 111 452 122 414 134 399 149 15 597 96.1 570 104 537 113 496 125 454 137 440 151														
15 597 96.1 570 104 537 113 496 125 454 137 440 151	140.4													
107 307 110 307 120 171 137 100 134		18	-	-	619	107	584	116	539	128	494	139	480	154

kWf = Potenza frigorifera in kW. il dato non tiene conto della quota parte relativa alle pompe e necessaria per vincere le perdite di carico per la circolazione della soluzione all'interno degli scambiatori

 $kWe = Potenza\ elettrica\ assorbita\ dai\ compressori\ in\ kW$

 $[\]label{eq:total_continuous} To = \mbox{Temperatura acqua uscita lato utilizzo / freddo (°C)}$

Le prestazioni sono riferite a DT = 5°C sia lato utilizzo che lato sorgente

Prestazioni in raffreddamento

					ī	emperatura	acqua ingres	so lato sorge	nte / caldo (°C	:)			
Grandezze	To (°C)	2	5	3	0	3	5	4	10	4	5	5	0
		kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe
	5	488	98.7	467	108	440	119	406	131	372	144	352	159
	7	521	101	498	110	469	120	433	133	397	145	377	161
160.4	10	573	104	549	113	517	123	478	136	438	148	420	164
100.4	12	609	106	583	115	550	125	507	137	465	150	449	166
	15	666	110	637	118	601	128	555	141	509	153	496	168
	18	-	-	692	122	653	132	603	144	553	156	542	171
	5	546	111	522	123	494	135	454	151	415	167	390	188
	7	583	113	557	124	527	137	485	153	442	169	417	189
180.4	10	641	115	613	126	580	139	533	155	487	171	463	190
100.4	12	680	117	651	128	615	140	566	156	517	172	493	191
	15	744	119	711	131	671	143	618	159	565	174	544	194
	18	-	-	772	133	728	146	670	161	613	177	597	196
	5	600	122	574	134	544	148	501	164	458	181	429	202
	7	640	124	612	136	579	149	534	166	488	183	459	204
200.4	10	704	127	674	139	637	152	587	169	538	185	510	206
200.4	12	747	129	715	141	676	154	623	171	571	187	543	207
	15	816	132	781	144	738	157	681	174	623	190	599	210
	18	-	-	847	147	800	160	738	177	676	193	656	213
	5	656	134	627	148	595	162	547	181	500	200	468	225
	7	699	136	669	149	634	164	583	183	533	202	500	226
220.4	10	768	138	736	152	696	167	641	186	586	204	555	228
220.4	12	815	140	780	154	738	169	680	187	622	206	591	229
	15	890	143	852	157	805	172	742	190	679	209	651	232
	18	-	-	924	160	873	175	805	193	736	212	712	234
	5	707	147	676	162	640	179	588	200	536	221	503	249
	7	753	148	720	164	682	180	626	202	571	223	538	250
240.4	10	827	151	792	166	748	183	688	204	627	226	596	252
240.4	12	877	153	840	168	793	185	729	206	665	227	636	254
	15	957	156	916	172	864	188	795	209	726	230	700	256
	18	-	-	992	175	936	191	861	212	786	233	767	259

kWf = Potenza frigorifera in kW. il dato non tiene conto della quota parte relativa alle pompe e necessaria per vincere le perdite di carico per la circolazione della soluzione all'interno degli scambiatori

 $kWe = Potenza\ elettrica\ assorbita\ dai\ compressori\ in\ kW$

To = Temperatura acqua uscita lato utilizzo / freddo (°C)

Le prestazioni sono riferite a DT = 5° C sia lato utilizzo che lato sorgente

Prestazioni in riscaldamento

Grandezze	To (°C)	Temperatura acqua ingresso lato sorgente / freddo (°C)													
		-	10	1				15 1		20		22			
		kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe		
70.4	30	252	42.6	265	43.0	288	43.6	303	44.0	327	44.6	343	45.0		
	35	247	46.7	260	47.2	282	48.0	297	48.5	320	49.3	336	49.8		
	40	239	51.8	251	52.3	272	53.1	286	53.7	309	54.6	324	55.2		
	45	232	56.9	243	57.3	263	58.3	276	58.9	297	59.9	312	60.7		
	55	224	63.5	234	64.0	253	64.9	266	65.6	286	66.6	300	67.4		
	30	268	46.1	283	46.6	306	47.3	322	47.7	347	48.4	364	48.8		
	35	264	50.6	277	51.1	300	52.0	316	52.5	340	53.4	357	53.9		
75.4	40	255	56.1	268	56.6	290	57.5	304	58.1	327	59.1	343	59.7		
	45	247	61.5	259	62.0	280	63.1	293	63.8	315	64.8	330	65.5		
	55	239	68.6	250	69.1	270	70.1	283	70.8	304	71.9	319	72.6		
	30	287	48.7	302	49.1	328	49.8	345	50.2	372	50.9	391	51.3		
	35	282	53.5	297	54.0	322	54.8	338	55.3	365	56.1	383	56.6		
80.4	40	274	59.3	288	59.8	311	60.7	327	61.3	352	62.1	369	62.7		
	45	265	65.1	278	65.6	300	66.6	315	67.2	339	68.2	355	68.8		
	55	256	72.4	268	72.9	289	73.8	303	74.5	326	75.4	341	76.1		
85.4	30	311	53.4	328	54.0	355	54.8	374	55.4	403	56.2	423	56.8		
	35	306	58.6	322	59.2	348	60.2	366	60.9	394	61.9	414	62.6		
	40	296	65.0	311	65.6	336	66.7	353	67.4	380	68.5	399	69.3		
	45	287	71.3	301	72.0	325	73.1	340	73.9	366	75.1	383	76.0		
	55	277	79.5	290	80.1	313	81.2	328	82.0	353	83.2	370	84.1		
	30	337	57.5	355	58.1	386	59.0	406	59.7	438	60.6	460	61.2		
	35	331	63.0	349	63.6	378	64.8	398	65.5	429	66.7	450	67.4		
90.4	40	321	69.9	338	70.5	365	71.7	384	72.5	413	73.8	433	74.7		
	45	311	76.7	326	77.4	352	78.7	370	79.6	397	81.0	416	81.9		
	55	300	85.6	314	86.3	339	87.5	356	88.3	382	89.8	401	90.9		
	30	368	62.9	389	63.6	422	64.6	445	65.3	483	66.4	509	67.1		
	35	361	68.8	381	69.4	412	70.5	435	71.2	472	72.3	497	73.1		
100.4	40	350	76.5	369	77.1	398	78.1	420	78.9	455	80.1	479	80.9		
	45	340	84.1	357	84.8	385	85.8	405	86.6	438	87.8	461	88.7		
	55	330	94.5	346	95.1	372	96.1	392	96.9	423	98.1	444	99.0		
	30	407	70.2	425	70.8	446	71.5	467	72.2	504	73.4	530	74.2		
	35	400	76.1	418	76.6	437	77.2	459	77.9	496	79.0	521	79.8		
110.4	40	388	84.2	405	84.7	423	85.2	444	85.9	480	87.0	504	87.8		
	45	377	92.4	393	92.8	409	93.3	429	94.0	464	95.1	488	95.8		
	55	365	103	379	103	395	104	416	105	448	106	470	106		
	30	459	77.2	487	78.2	530	79.9	561	81.1	610	83.0	643	84.3		
120.4	35	449	84.3	476	85.2	517	87.0	547	88.2	594	90.2	626	91.5		
	40	435	93.5	460	94.5	499	96.2	527	97.5	570	99.5	600	101		
	45	422	103	445	104	480	105	506	107	547	109	575	110		
	55	407	115	428	116	462	118	487	119	525	121	552	123		
	30	523	88.3	554	89.7	602	92.0	637	93.8	692	96.6	730	98.6		
	35	513	96.1	543	97.4	588	99.7	621	101	675	104	711	106		
140.4	40	497	106	525	108	567	110	599	111	648	114	682	116		
	45	481	116	507	118	547	120	576	122	622	124	654	126		
	55	463	130	488	131	525	133	553	135	597	137	627	139		

kWt = Potenza termica allo scambiatore interno (kW). Il dato non tiene conto della quota parte relativa alle pompe e necessaria per vincere le perdite di carico per la circolazione della soluzione all'interno degli scambiatori.

La potenza termica kWt indicata non tiene conto dell'effetto di eventuali cicli di sbrinamento. Per il calcolo della potenza termica effettiva comprensiva dei cicli di sbrinamento fare riferimento alla tabella 'Potenze termiche integrate'.

kWe = Potenza elettrica assorbita dai compressori in kW

To = Temperatura acqua uscita lato utilizzo / caldo (°C)

Le prestazioni sono riferite a $DT = 5^{\circ}C$ sia lato utilizzo che lato sorgente

Prestazioni in riscaldamento

	To (°C)	Temperatura acqua ingresso lato sorgente / freddo (°C)													
Grandezze		10		12		15		17		20		22			
		kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe		
	30	586	99.4	621	101	677	104	714	107	775	110	817	113		
	35	575	108	608	110	661	113	697	115	755	118	795	121		
160.4	40	557	119	588	121	638	124	672	126	726	129	764	131		
	45	540	130	568	132	615	135	647	137	698	140	733	142		
	55	519	144	546	146	591	149	621	150	669	154	703	156		
	30	656	112	693	114	755	116	795	117	861	120	906	122		
	35	645	123	680	124	740	126	779	128	842	130	886	132		
180.4	40	626	136	660	138	715	140	752	142	811	144	851	146		
	45	608	150	639	151	690	154	724	155	779	158	817	159		
	55	586	168	615	169	664	172	696	173	748	175	784	177		
	30	720	123	761	125	825	128	872	130	945	133	995	135		
	35	709	134	748	136	809	139	854	141	924	144	972	146		
200.4	40	688	149	725	150	782	153	824	155	890	158	934	160		
	45	668	163	702	165	755	167	795	169	856	172	897	174		
	55	643	182	675	184	725	186	763	188	821	191	861	193		
	30	788	135	833	137	905	139	953	141	1031	144	1084	147		
	35	776	148	818	149	888	152	935	154	1009	157	1061	159		
220.4	40	753	164	793	165	859	168	902	170	972	173	1021	175		
	45	731	180	769	181	830	184	870	186	935	189	980	191		
	55	704	202	739	203	797	205	835	207	897	210	940	212		
	30	852	148	900	150	972	152	1026	154	1110	157	1167	159		
	35	839	162	884	164	955	166	1007	168	1088	171	1142	174		
240.4	40	815	180	857	182	922	184	971	186	1047	189	1098	192		
	45	791	198	831	200	890	202	936	204	1007	207	1054	209		
	55	762	223	800	224	856	226	900	228	967	231	1013	233		

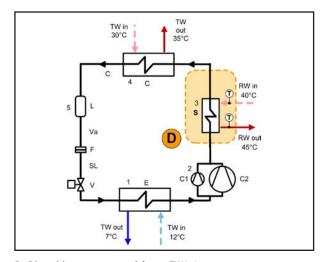
kWt = Potenza termica allo scambiatore interno (kW). Il dato non tiene conto della quota parte relativa alle pompe e necessaria per vincere le perdite di carico per la circolazione della soluzione all'interno degli scambiatori.

La potenza termica kWt indicata non tiene conto dell'effetto di eventuali cicli di sbrinamento. Per il calcolo della potenza termica effettiva comprensiva dei cicli di sbrinamento fare riferimento alla tabella 'Potenze termiche integrate'.

kWe = Potenza elettrica assorbita dai compressori in kW

Le prestazioni sono riferite a DT = 5°C sia lato utilizzo che lato sorgente

To = Temperatura acqua uscita lato utilizzo / caldo (°C)

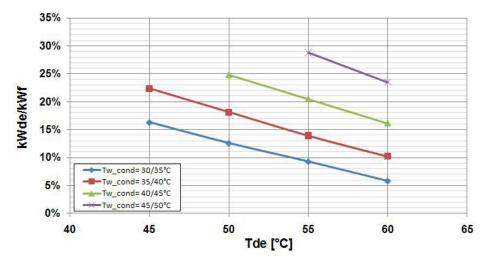

Configurazioni

D - Recupero energetico parziale

Composto da scambiatori di calore del tipo a piastre saldobrasate in acciaio lnox AISI 316 isolato termicamente, idonei a recuperare parte della potenza dissipata dall'unità. Massima pressione di esercizio dello scambiatore: 10 bar lato acqua e 45 bar lato refrigerante. La configurazione consente la produzione gratuita di acqua calda durante il funzionamento in raffreddamento, grazie al recupero di parte del calore di condensazione che verrebbe altrimenti smaltito sulla sorgente termica esterna. Tale opzione è nota anche come 'desurriscaldatore'. Il dispositivo di recupero parziale si considera in funzione quando è alimentato dal flusso d'acqua da riscaldare. Questa condizione migliora le prestazioni dell'unità. Quando la temperatura dell'acqua da riscaldare è particolarmente bassa, è necessario regolare la portata (lato utente) in modo tale da mantenere la temperatura in uscita al recupero maggiore di 35°C ed evitare così la condensazione del refrigerante nello scambiatore a piastre.

La potenza erogabile dal recupero parziale è pari al 25% della potenza termica dissipata (potenza frigorifera + potenza elettrica assorbita dai compressori)

D - Dispositivo recupero parziale


- 1 Scambiatore lato utilizzo
- 2 Compressori
- 3 Scambiatore di recupero (D)
- 4 Scambiatore lato sorgente
- 5 Valvola elettronica di espansione

TW in Ingresso acqua TW out Uscita acqua

RW in - Ingresso acqua recupero RW out - Uscita acqua recupero

T - Sonda di temperatura

Potenza termica recupero parziale

iue = iemperatura uscita acqua scambiatore recupero [C_J Temperatura uscita acqua scambiatore utilizzo = $7^{\circ}C$ [$^{\circ}C$]

Utilizzo efficiente dell'energia con il recupero di calore

In quasi tutti gli impianti dove è installato un chiller per la produzione di acqua refrigerata c'è anche la necessità di avere acqua calda. Il recupero di calore di condensazione è un sistema efficiente per la produzione di acqua calda durante il funzionamento del chiller. Esso comporta il duplice beneficio sia di ridurre il carico termico al condensatore eliminando i costi di dissipazione che di produrre gratuitamente acqua calda riducendo i costi del riscaldatore ausiliario.

Versatilita' applicativa dei dispositivi di recupero

Gli impieghi dell'acqua calda prodotta dal recupero di calore sono molteplici: post-riscaldamento dell'aria nelle centrali di trattamento, pre-riscaldamento dell'acqua calda per uso domestico o di processo industriale, riscaldamento dell'acqua nelle piscine, docce e SPA, pre-riscaldamento dell'acqua calda per le lavanderie o per le cucine industriali.

Post-riscaldamento nelle centrali di trattamento aria controllo umidità negli ospedali e nei lahoratori

Pre-riscaldamento dell'acqua calda per uso domestico o di processo industriale

Riscaldamento dell'acqua nelle piscine, docce e SPA

Pre-riscaldamento dell'acqua calda per le lavanderie e per le cucine industriali

Riscaldamento dell'aria

Il dispositivo di recupero di calore può essere utilizzato per coprire l'intero carico termico richiesto. La temperatura di mandata dell'acqua calda è mantenuta sotto controllo attraverso una valvola di regolazione modulante da collocare sull'impianto all'uscita del recuperatore. Il dispositivo di riscaldamento ausiliario è raccomandato per coprire il fabbisogno di energia termica nei casi in cui il chiller non sta funzionando o sta funzionando in modo parzializzato.

Esempio di utilizzo del recupero di calore con copertura dell'intero fabbisogno termico e controllo della temperatura di utilizzo

RW out 45°C

Pre-riscaldamento dell'acqua

Il dispositivo di recupero di calore può essere utilizzato per preriscaldare l'acqua in ingresso al dispositivo di riscaldamento principale (es. caldaia). In questo caso il fabbisogno di acqua calda è superiore al calore recuperato dalla condensazione e il dispositivo di recupero copre solo una parte del carico termico richiesto. Preriscaldando l'acqua i consumi di riscaldamento vengono pertanto ridotti e il dispositivo di riscaldamento principale ha una potenza installata più piccola.

Esempio di utilizzo del recupero di calore per pre-riscaldamento dell'acqua calda dell'impianto

Produzione di acqua calda sanitaria

Il dispositivo di recupero di calore può essere utilizzato per la produzione di acqua per uso sanitario. Affinché non ci sia contaminazione dell'acqua sanitaria con il fluido di processo del chiller è necessario interporre uno scambiatore di calore intermedio. L'impiego di un accumulo di calore inerziale consente di avere una riserva di acqua preriscaldata e di far lavorare in modo più efficiente lo scambiatore intermedio.

Esempio di utilizzo del recupero di calore per pre-riscaldare l'acqua calda ad uso domestico

RW noil 45°C

- A Limite di fornitura dell'unità
- 1 Scambiatore di recupero
- 3 Dispositivo di riscaldamento ausiliario (es.boiler)
- 5 Scambiatore di calore intermedio

RW in - Ingresso acqua recupero

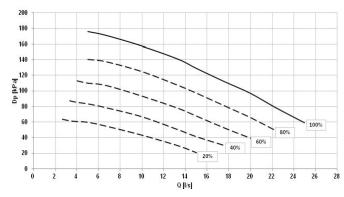
T in - Ingresso acqua potabile

- D Recupero energetico parziale
- 2 Valvola modulante di regolazione
- 4 Elettropompa con pompa di riserva
- 6 Accumulo di calore inerziale

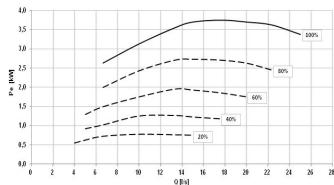
RW out - Uscita acqua recupero

T out - Uscita acqua potabile al riscaldatore ausiliario

Gli schemi sono riferiti al recupero energetico parziale, valgono tuttavia anche per il recupero energetico totale (sigla Clivet R). Si precisa inoltre che tali schemi sono puramente indicativi.

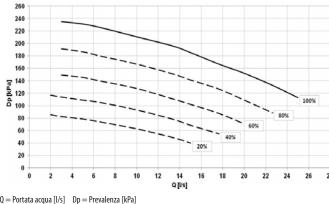

VARYS - VARYFLOW+ (2 pompe inverter lato sorgente)

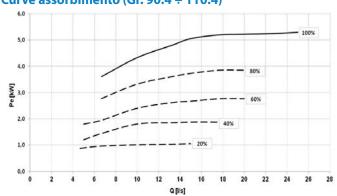
Configurazione che prevede 2 elettropompe di tipo centrifugo disposte in parallelo comandate da inverter, con corpo e girante in acciaio AISI 304, e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.


Le elettropompe sono dotate di motore elettrico trifase con grado di protezione IP55 e complete di guscio isolante in termoformato.

La regolazione, modula la portata dell'acqua mantenendo costante il delta T. Se la temperatura dell'acqua si trova in condizioni critiche, permette di estendere i limiti di funzionamento dell'unità garantendone il funzionamento riducendo automaticamente la portata dell'acqua. In caso di temporanea indisponibilità di una delle due pompe, garantisce circa l'80% della portata nominale.

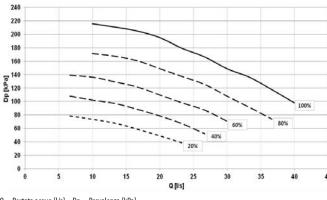
Prevalenza (Gr. 70.4 ÷ 85.4)

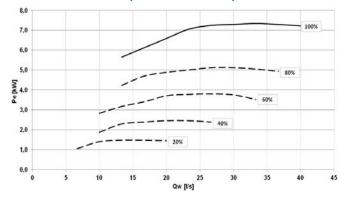

Curve assorbimento (Gr. 70.4 ÷ 85.4)


Q = Portata acqua [I/s] Dp = Prevalenza [kPa]

Q = Portata acqua [l/s] Pe = Potenza elettrica assorbita [kW]

Prevalenza (Gr. 90.4 ÷ 110.4)


Curve assorbimento (Gr. 90.4 ÷ 110.4)


 $\label{eq:Q} Q = Portata\ acqua\ [I/s] \quad Dp = Prevalenza\ [kPa]$

Q = Portata acqua [l/s] Pe = Potenza elettrica assorbita [kW]

Prevalenza (Gr. 120.4 ÷ 160.4)

Curve assorbimento (Gr. 120.4 ÷ 160.4)

Q = Portata acqua [I/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di:

- Perdite di carico dello scambiatore lato utilizzo
- Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

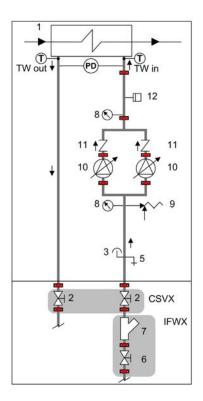
(segue)

VARYS - VARYFLOW+ (2 pompe inverter lato sorgente)

Prevalenza (Gr. 180.4 ÷ 240.4)

Curve assorbimento (Gr. 180.4 ÷ 240.4) 260 240 12,0 220 200 180 160 140 6 120 100 80 60 40 20

 $\label{eq:Q} Q = Portata\ acqua\ [l/s] \quad Dp = Prevalenza\ [kPa]$


Q = Portata acqua [l/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi di d

- Perdite di carico dello scambiatore lato utilizzo
 - Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

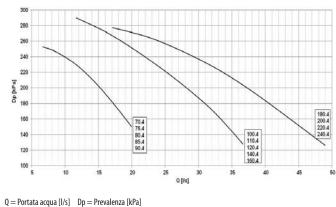
Schema idraulico

- 1 Scambiatore interno 2 Rubinetto di intercettazione
- Valvola di sfiato
- Rubinetto di scarico
- Rubinetto di intercettazione con giunti rapidi
- Filtro a maglia di acciaio sul lato acqua
- 8 Manometro
- 9 Valvola di sicurezza (6 bar)
- 10 Elettropompa monoblocco con girante ad alto rendimento azionata ad inverter
- 11 Valvola di non ritorno
- 12 Pressostato di sicurezza carico impianto (impedisce il funzionamento delle pompe nel caso di mancanza d'acqua)
- T Sonda di temperatura PD Pressostato differenziale

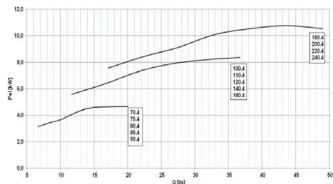
TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

IFWX = Filtro a maglia di acciaio lato acqua

CSVX - Coppia di valvole di intercettazione ad azionamento manuale



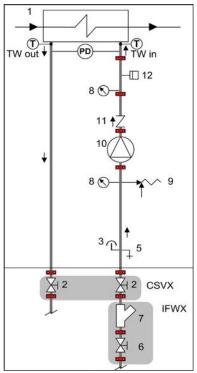
HYGS1 - Gruppo idronico lato sorgente con 1 pompa ON/OFF


Configurazione che prevede 1 elettropompa di tipo centrifugo, con corpo e girante in acciaio AISI 304 e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.

L'elettropompa è dotata di motore elettrico trifase con grado di protezione IP55 e completa di guscio isolante in termoformato.

Prevalenza (Gr. 70.4 ÷ 240.4)

Curve assorbimento (Gr. 70.4 ÷ 240.4)


Q = Portata acqua [l/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di:

- Perdite di carico dello scambiatore lato utilizzo
- Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

Schema idraulico

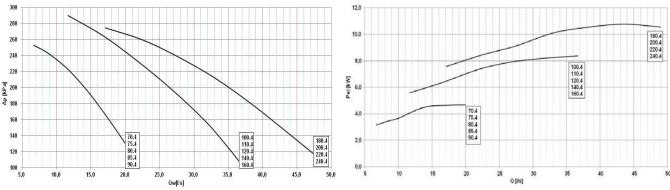
- Scambiatore interno
- 2 Rubinetto di intercettazione
- Valvola di sfiato
- 5 Rubinetto di scarico 6 Rubinetto di intercettazione con giunti rapidi
- 7 Filtro a maglia di acciaio sul lato acqua
- 8 Manometro 9 Valvola di sicurezza (6 bar)
- 10 Elettropompa monoblocco con girante ad alto rendimento
- 11 Valvola di non ritorno
- 12 Pressostato di sicurezza carico impianto (impedisce il funzionamento delle pompe nel caso di mancanza d'acqua)

T - Sonda di temperatura PD - Pressostato differenziale

TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

IFWX = Filtro a maglia di acciaio lato acqua CSVX - Coppia di valvole di intercettazione ad azionamento manuale

HYGS2 - Gruppo idronico lato sorgente con 2 pompe ON/OFF


Configurazione che prevede 2 elettropompe di tipo centrifugo di cui una in stand-by, con corpo e girante in acciaio AISI 304 e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.

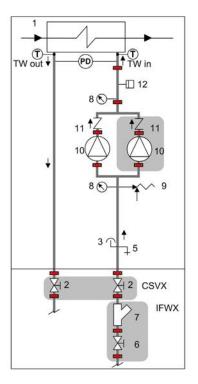
Le elettropompe sono dotate di motore elettrico trifase con grado di protezione IP55 e complete di guscio isolante in termoformato.

La regolazione bilancia le ore di funzionamento ed in caso di eventuale avaria segnala il guasto ed attiva automaticamente la pompa di riserva.

Prevalenza (Gr. 70.4 ÷ 240.4)

Curve assorbimento (Gr. 70.4 ÷ 240.4)

Q = Portata acqua [I/s] Ap = Prevalenza [kPa]


Q = Portata acqua [I/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di:

- Perdite di carico dello scambiatore lato utilizzo
- · Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

Schema idraulico

- 1 Scambiatore interno
- 2 Rubinetto di intercettazione
- 3 Valvola di sfiato
- 5 Rubinetto di scarico
- 6 Rubinetto di intercettazione con giunti rapidi
- Filtro a maglia di acciaio sul lato acqua
- 8 Manometro
- 9 Valvola di sicurezza (6 bar)
- 10 Elettropompa monoblocco con girante ad alto rendimento
- 11 Valvola di non ritorno
- 12 Pressostato di sicurezza carico impianto (impedisce il funzionamento delle pompe nel caso di mancanza d'acqua)
- T Sonda di temperatura
- PD Pressostato differenziale

TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

IFWX = Filtro a maglia di acciaio lato acqua

CSVX - Coppia di valvole di intercettazione ad azionamento manuale

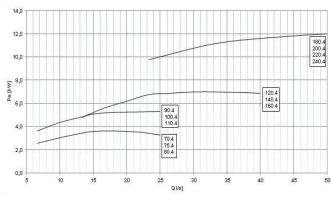
HYP2S - HydroPack lato sorgente con n° 2 pompe

Gruppo di pompaggio fornito a bordo unità composto da 2 elettropompe disposte in parallelo (tutte in funzione), con logica di attivazione di tipo modulare auto-adattiva.

Elettropompa di tipo centrifugo con girante in acciaio AISI 304 e corpo in acciaio AISI 304 o ghisa grigia (a seconda dei modelli). Tenuta meccanica mediante componenti in materiale ceramico, carbone ed elastomeri EPDM.

Motore elettrico trifase con grado di protezione IP55 ed isolamento in classe F. Completa di guscio isolante termoformato, attacchi rapidi tipo Victaulic con guscio isolante, valvola di non ritorno, valvola di sicurezza (6 bar), manometri, pressostato di sicurezza carico impianto, resistenze antigelo in acciaio inossidabile del tipo ad immersione poste in aspirazione e in mandata.

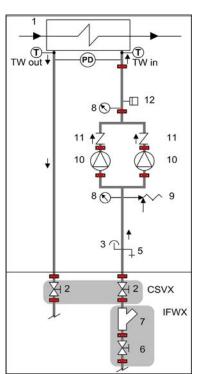
L'opzione HYP2S è fornita con il kit composto da 2 attacchi rapidi ciechi, per la rimozione di una pompa in caso di manutenzione.



Prevedere intercettazioni idrauliche all'esterno dell'unità (opzione 'CSVX - Coppia di valvole di intercettazione ad azionamento manuale') per agevolare eventuali interventi di straordinaria manutenzione.

Prevalenza (Gr. 70.4 ÷ 240.4)

Curve assorbimento (Gr. 70.4 ÷ 240.4)


Q = Portata acqua [l/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di:

- Perdite di carico dello scambiatore lato utilizzo
- Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

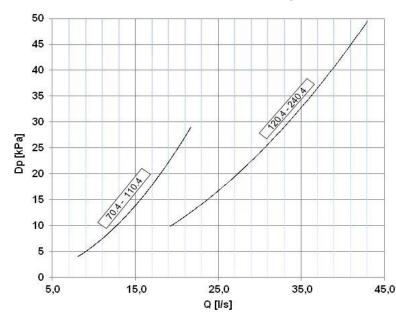
Schema idraulico

- 1 Scambiatore interno
- 2 Rubinetto di intercettazione
- 3 Valvola di sfiato
- 5 Rubinetto di scarico
- 6 Rubinetto di intercettazione con giunti rapidi
- 7 Filtro a maglia di acciaio sul lato acqua
- 8 Manometro
- 9 Valvola di sicurezza (6 bar)
- 10 Elettropompa monoblocco con girante ad alto rendimento
- 11 Valvola di non riotrno
- 12 Pressostato di sicurezza carico impianto (impedisce il funzionamento delle pompe nel caso di mancata acqua)
- T Sonda di temperatura
- PD Pressostato differenziale

TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

TW out oscita acqua remigerata

IFWX = Filtro a maglia di acciaio lato acqua CSVX - Coppia di valvole di intercettazione ad azionamento manuale

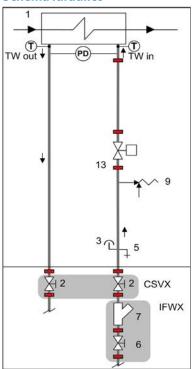

VS2M - Valvola 2 vie modulante lato sorgente

Configurazione che prevede 1 valvola 2 vie modulante a globo a caratteristica equipercentuale lato sorgente e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono victaulic.

La valvola è adatta per una differenza di pressione fino a 2 bar per grandezze da 70.4 a 110.4 e fino a 1,5 bar per grandezze da 120.4 a 240.4.

La valvola a due vie modulante, installata in ingresso allo scambiatore lato sorgente, modula la portata dell'acqua tramite un segnale 0-10 V emesso dal controllo elettronico dell'unità.

Perdite di carico valvola 2 vie modulante lato sorgente



Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di 7°C

Q = Portata acqua [I/s] Dp = Perdite di carico [kPa]

Grandezze		70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
Massimo DP di apertura	[bar]	2	2	2	2	2	2	2	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Massimo trafilamento [I/min]		2,4	2,4	2,4	2,4	2,4	2,4	2,4	3,7	3,7	3,7	3,7	3,7	3,7	3,7
Diametri		4"	4"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"

Schema idraulico

- 1 Scambiatore interno
- Rubinetto di intercettazione
- Valvola di sfiato
- Rubinetto di scarico
- Rubinetto di intercettazione con giunti rapidi
- 7 Filtro a maglia di acciaio sul lato acqua 9 Valvola di sicurezza (6 bar)
- 13 Valvola 2 vie modulante

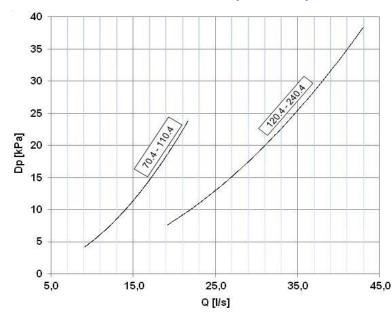
T - Sonda di temperatura PD - Pressostato differenziale

TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

IFWX = Filtro a maglia di acciaio lato acqua

CSVX - Coppia di valvole di intercettazione ad azionamento manuale

Gruppi idronici - lato sorgente

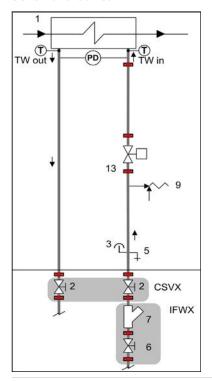

V2MSP - Valvola 2 vie modulante lato sorgente per elevata pressione differenziale

Configurazione che prevede 1 valvola 2 vie modulante a sfera a caratteristica equipercentuale lato sorgente e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono victaulic.

La valvola è adatta per una differenza di pressione fino a 4 bar e garantisce un trafilamento pari a 0.

La valvola a due vie modulante, installata in ingresso allo scambiatore lato sorgente, modula la portata dell'acqua tramite un segnale 0-10 V emesso dal controllo elettronico dell'unità.

Perdite di carico valvola 2 vie modulante per elevata pressione differenziale



Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di 7°C

 $Q = Portata\ acqua\ [l/s]$ DP = Perdite di carico [kPa]

Grandezze		70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
Massimo DP di apertura	[bar]	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Massimo trafilamento	[l/min]	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Diametri		4"	4"	4"	4"	4"	4"	4"	5"	5"	5″	5″	5"	5″	5"

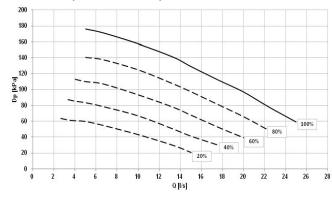
Schema idraulico

- Scambiatore interno
- Rubinetto di intercettazione
- Valvola di sfiato
- Rubinetto di scarico
- 6 Rubinetto di intercettazione con giunti rapidi
- 7 Filtro a maglia di acciaio sul lato acqua 9 Valvola di sicurezza (6 bar)
- 13 Valvola 2 vie modulante per elevata pressione differenziale
- T Sonda di temperatura PD Pressostato differenziale

TW in Ingresso acqua refrigerata TW out Úscita acqua refrigerata

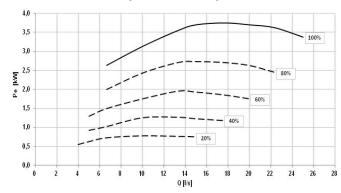
IFWX = Filtro a maglia di acciaio lato acqua

CSVX - Coppia di valvole di intercettazione ad azionamento manuale

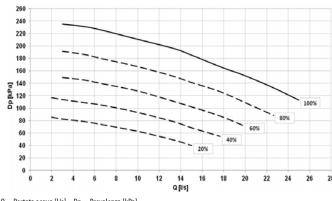

VARYU - VARYFLOW+ (2 pompe inverter lato utilizzo)

Configurazione che prevede 2 elettropompe di tipo centrifugo disposte in parallelo comandate da inverter, con corpo e girante in acciaio AISI 304, e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.

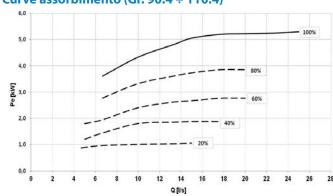
Le elettropompe sono dotate di motore elettrico trifase con grado di protezione IP55 e complete di guscio isolante in termoformato.


La regolazione, modula la portata d'acqua mantenendo costante il delta T. Se la temperatura dell'acqua si trova in condizioni critiche, permette di estendere i limiti di funzionamento dell'unità garantendone il funzionamento riducendo automaticamente la portata dell'acqua. In caso di temporanea indisponibilità di una delle due pompe, garantisce circa l'80% della portata nominale.

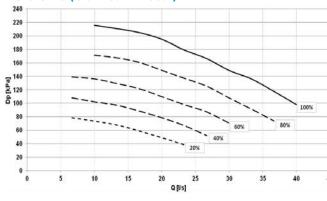
Prevalenza (Gr. 70.4 ÷ 85.4)


Q = Portata acqua [l/s] Dp = Prevalenza [kPa]

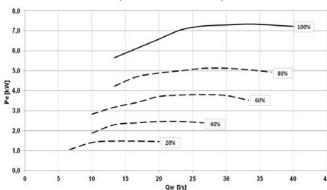
Curve assorbimento (Gr. 70.4 ÷ 85.4)


Q = Portata acqua [I/s] Pe = Potenza elettrica assorbita [kW]

Prevalenza (Gr. 90.4 ÷ 110.4)


Q = Portata acqua [I/s] Dp = Prevalenza [kPa]

Curve assorbimento (Gr. 90.4 ÷ 110.4)


Q = Portata acqua [I/s] Pe= Potenza elettrica assorbita [kW]

Prevalenza (Gr. 120.4 ÷ 160.4)

Q = Portata acqua [I/s] Dp = Prevalenza [kPa]

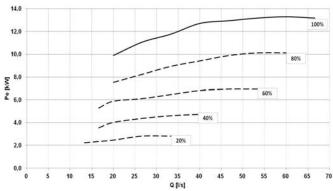
Curve assorbimento (Gr. 120.4 ÷ 160.4)

Q = Portata acqua [I/s] Pe= Potenza elettrica assorbita [kW]

1

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di:

- Perdite di carico dello scambiatore lato utilizzo
- Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)



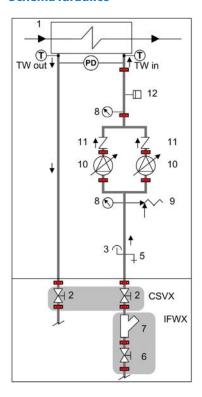
VARYU - VARYFLOW+ (2 pompe inverter lato utilizzo)

Prevalenza (Gr. 180.4 ÷ 240.4)

260 240 220 180 160 160 140 6 120 100 80 60 40

Curve assorbimento (Gr. 180.4 ÷ 240.4)

Q = Portata acqua [I/s] Dp = Prevalenza [kPa]


Q = Portata acqua [I/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di:

- Perdite di carico dello scambiatore lato utilizzo
- Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

Schema idraulico

- Scambiatore interno
- Rubinetto di intercettazione
- Valvola di sfiato
- Rubinetto di scarico
- Rubinetto di intercettazione con giunti rapidi Filtro a maglia di acciaio sul lato acqua

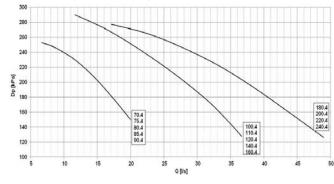
- Valvola di sicurezza (6 bar)
 Elettropompa monoblocco con girante ad alto rendimento azionata ad inverter
- 12 Pressostato di sicurezza carico impianto (impedisce il funzionamento delle pompe nel caso di mancata acqua)

T - Sonda di temperatura

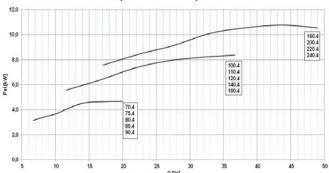
TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

IFWX = Filtro a maglia di acciaio lato acqua

CSVX - Coppia di valvole di intercettazione ad azionamento manuale



HYGU1- Gruppo idronico lato utilizzo con 1 pompa ON/OFF

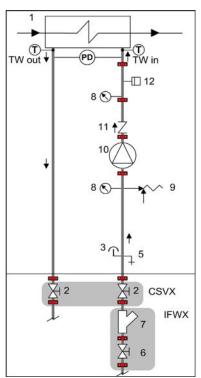

Configurazione che prevede 1 elettropompa di tipo centrifugo, con corpo e girante in acciaio AISI 304 e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi sono Victaulic.

L'elettropompa è dotata di motore elettrico trifase con grado di protezione IP55 e completa di guscio isolante in termoformato.

Prevalenza (70.4 ÷ 240.4)

Curve assorbimento (70.4 ÷ 240.4)

Q = Portata acqua [I/s] Dp = Prevalenza [kPa]


Q = Portata acqua [l/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di:

- Perdite di carico dello scambiatore lato utilizzo
- Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

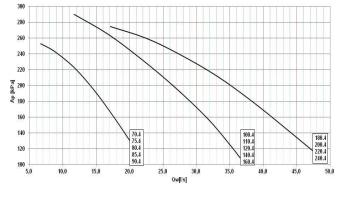
Schema idraulico

- Scambiatore interno
- Rubinetto di intercettazione
- Valvola di sfiato
- Rubinetto di scarico
- Rubinetto di intercettazione con giunti rapidi
- 7 Filtro a maglia di acciaio sul lato acqua 8 Manometro
- 9 Valvola di sicurezza (6 bar)
- 10 Elettropompa monoblocco con girante ad alto rendimento
- 11 Valvola di non ritorno
- 12 Pressostato di sicurezza carico impianto (impedisce il funzionamento delle pompe nel caso di mancanza d'acqua)
- T Sonda di temperatura
- PD Pressostato differenziale

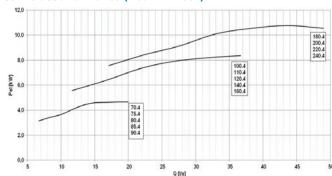
TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

IFWX = Filtro a maglia di acciaio lato acqua

CSVX - Coppia di valvole di intercettazione ad azionamento manuale


HYGU2- Gruppo idronico lato utilizzo con 2 pompe ON/OFF

Configurazione che prevede 2 elettropompe di tipo centrifugo ci cui una in stand-by, con corpo e girante in acciaio AISI 304 e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.

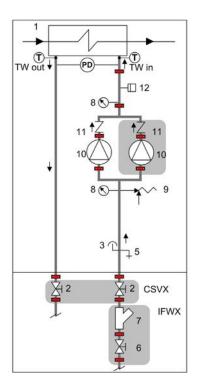

Le elettropompe sono dotate di motore elettrico trifase con grado di protezione IP55 e complete di guscio isolante in termoformato.

La regolazione bilancia le ore di funzionamento ed in caso di eventuale avaria segnala il guasto ed attiva automaticamente la pompa di riserva.

Prevalenza (70.4 ÷ 240.4)

Curve assorbimento (70.4 ÷ 240.4)

Q = Portata acqua [I/s] Dp = Prevalenza [kPa]


Q = Portata acqua [l/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate su questi diagrammi devono essere diminuite di: alle prevalenze rappresentate di diagrammi di diagramm

- Perdite di carico dello scambiatore lato utilizzo
- Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

Schema idraulico

- I Scambiatore interno
- 2 Rubinetto di intercettazione
- 3 Valvola di sfiato
- 5 Rubinetto di scarico
- 6 Rubinetto di intercettazione con giunti rapidi
- 7 Filtro a maglia di acciaio sul lato acqua
- 8 Manometro
- 9 Valvola di sicurezza (6 bar)
- 10 Elettropompa monoblocco con girante ad alto rendimento
- 11 Valvola di non riotrno
- 12 Pressostato di sicurezza carico impianto (impedisce il funzionamento delle pompe nel caso di mancata acqua)
- T Sonda di temperatura
- PD Pressostato differenziale

TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

IFWX = Filtro a maglia di acciaio lato acqua

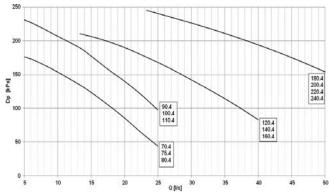
CSVX - Coppia di valvole di intercettazione ad azionamento manuale

HYP2U - Hydropack lato utilizzo con n° 2 pompe

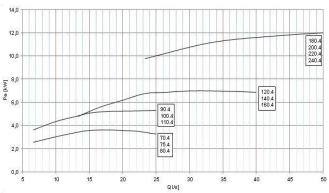
Gruppo di pompaggio fornito a bordo unità composto da 2 elettropompe disposte in parallelo (tutte in funzione), con logica di attivazione di tipo modulare

Elettropompa di tipo centrifugo con girante in acciaio AISI 304 e corpo in acciaio AISI 304 o ghisa grigia (a seconda dei modelli). Tenuta meccanica mediante componenti in materiale ceramico, carbone ed elastomeri EPDM.

Motore elettrico trifase con grado di protezione IP55 ed isolamento in classe F. Completa di guscio isolante termoformato, attacchi rapidi tipo Victaulic con guscio isolante, valvola di non ritorno, valvola di sicurezza (6 bar), manometri, pressostato di sicurezza carico impianto, resistenze antigelo in acciaio inossidabile del tipo ad immersione poste in aspirazione e in mandata.



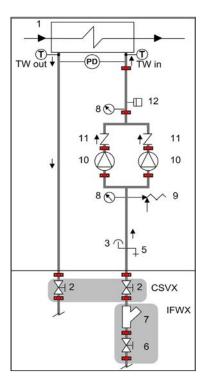
L'opzione HYP2U è fornita con il kit composto da 2 attacchi rapidi ciechi, per la rimozione di una pompa in caso di manutenzione.



Prevedere intercettazioni idrauliche all'esterno dell'unità (opzione 'CSVX - Coppia di valvole di intercettazione ad azionamento manuale') per agevolare eventuali interventi di straordinaria manutenzione

Prevalenza (70.4 ÷ 240.4)

Curve assorbimento (70.4 ÷ 240.4)


Q = Portata acqua [l/s] Pe = Potenza elettrica assorbita [kW]

Attenzione: per ottenere i valori di prevalenza utile, le prevalenze rappresentate su questi diagrammi devono essere diminuite di:

- Perdite di carico dello scambiatore lato utilizzo
- Accessorio IFVX Filtro a maglia d'acciaio sul lato acqua (ove presente)

Schema idraulico

Q = Portata acqua [I/s] Dp = Prevalenza [kPa]

- Scambiatore interno
- 2 Rubinetto di intercettazione 3 Valvola di sfiato
- Rubinetto di scarico
- 6 Rubinetto di intercettazione con giunti rapidi
- Filtro a maglia di acciaio sul lato acqua
- Manometro
- 9 Valvola di sicurezza (6 bar)
- 10 Elettropompa monoblocco con girante ad alto rendimento
- 12 Pressostato di sicurezza carico impianto (impedisce il funzionamento delle pompe nel caso di mancata acqua)
- T Sonda di temperatura
- PD Pressostato differenziale

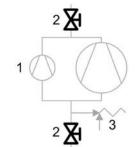
TW in Ingresso acqua refrigerata TW out Uscita acqua refrigerata

IFWX = Filtro a maglia di acciaio lato acqua

CSVX - Coppia di valvole di intercettazione ad azionamento manuale

Accessori

MHP - Manometri di alta e bassa pressione


Comprende due manometri a liquido per la misurazione analogica delle pressioni del refrigerante all'aspirazione e mandata dei compressori con relative prese di pressione montate a bordo macchina in posizione di facile accesso.

SDV - Rubinetto di intercettazione sulla mandata e sull'aspirazione dei compressori

Opzione che prevede il rubinetto di intercettazione sulla mandata e sull'aspirazione dei compressori. La presenza dei 2 rubinetti consente di isolare e sostituire i compressori senza scaricare il refrigerante dell'intero circuito frigorifero. Risultano così agevolate le attività di straordinaria manutenzione.

Il dispositivo è installato a bordo macchina.

- 1. Compressori
- 2. Opzione SDV
- 3. Valvola di sicurezza

PFCP - Condensatori di rifasamento (cosfi > 0.9)

Componente necessario per abbassare lo sfasamento tra corrente e tensione nei componenti elettromagnetici della macchina (es. motori asincroni). Il componente permette di portare il fattore di potenza cosfi a valori mediamente superiori a 0.9, riducendo la potenza reattiva della rete. Ciò comporta un beneficio economico che il fornitore di energia riconosce all'utente finale.

Il dispositivo è installato e cablato a bordo macchina.

MF2 - Monitore di fase multifunzione

Il monitore di fase multifunzione controlla la presenza e l'esatta sequenza delle fasi, verifica eventuali anomalie di tensione (+/-10%), ripristina automaticamente il funzionamento dell'unità appena viene ristabilita la corretta alimentazione.

Questo controllo consente di:

- salvaguardare i componenti interni dell'unità, che essendo alimentati da una tensione anomala potrebbero funzionare in modo non corretto o rompersi;
- identificare rapidamente fra gli allarmi dei componenti dell'unità, la reale causa del malfunzionamento dovuto allo sbalzo di tensione.

ECS - Funzionalità ECOSHARE per la gestione automatica di un gruppo di unità

Dispositivo che consente la gestione automatica di un gruppo di unità che operano sullo stesso circuito idraulico, mediante la creazione di una rete di comunicazione locale.

Sono disponibili tre modalità di controllo impostabili da parametro durante la messa in funzione. Due ripartiscono il carico termico sulle unità disponibili con la logica della distribuzione per beneficiare dell'efficienza a carico parziale ed uno scala il set-point di temperatura mandata dell'acqua sul gruppo di unità.

Inoltre:

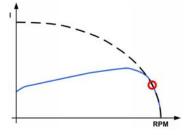
Modalità 1 – ripartisce il carico termico e mantiene attive tutte le pompe;

Modalità 2 – ripartisce il carico termico e attiva solo le pompe dell'unità chiamata in funzione.

Il dispositivo consente la rotazione secondo il criterio della minima usura e la gestione delle unità di stand-by. In caso di avaria di una unità il carico viene ripartito nelle altre unità. Le unità possono essere di diverse grandezze ma dello stesso tipo: tutte pompe di calore reversibili, oppure tutti refrigeratori di liquido. Il controllo del gruppo è affidato all'unità identificata come Master.

La rete locale può essere estesa fino a 7 unità (1 Master e 6 Slave).

L'unità dotata di questo dispositivo può essere equipaggiata contemporaneamente anche con l'opzione RCMRX ed una delle opzioni CMSC8 / CMSC9 / CMSC10


SFSTR – Dispositivo riduzione corrente di spunto

Dispositivo elettronico che avvia automaticamente i compressori in modo graduale, riducendo la corrente di avviamento dell'unità di circa il 40% rispetto al valore nominale. Attraverso la riduzione della coppia di avviamento del compressore ON/OFF, esso risulta maggiormente protetto da sollecitazioni meccaniche, consentendogli dunque una più lunga vita operativa. Inoltre il rumore è minimizzato.

Il dispositivo è installato e cablato a bordo macchina.

Nelle grandezze 180.4, 200.4, 220.4 e 240.4 il compressore di taglia superiore è equipaggiato di serie con un dispositivo per l'avviamento graduale, definito part-winding. Per tali unità i bene fici del soft-starter sono garantiti sui compressori di taglia inferiore, mantenendo invariata la M.I.C. (massima corrente di spunto) dell'unità standard

Corrente assorbita senza opzione SFSTRCorrente assorbita con opzione SFSTR

I compressori con potenza nominale 60 HP prevedono il dispositivo standard per l'avviamento graduale definito part-winding

CMSC8 - Modulo di comunicazione seriale per supervisore BACnet

Modulo che consente il collegamento seriale a sistemi di supervisione, utilizzando BACnet come protocollo di comunicazione. Permette l'accesso all'elenco completo di variabili di funzionamento, comandi ed allarmi. Con questo accessorio ogni unità può dialogare con i principali sistemi di supervisione.

Dispositivo installato e cablato a bordo macchina.

Le attività di configurazione e conduzione della rete BACnet sono a carico del Cliente

La lunghezza totale di ogni singola linea seriale non deve superare i 1000 metri e la linea va collegata in tipologia bus (entra/esci)

CMSC9 - Modulo di comunicazione seriale per supervisore Modbus

Modulo che consente il collegamento seriale a sistemi di supervisione, utilizzando Modbus come protocollo di comunicazione. Permette l'accesso all'elenco completo di variabili di funzionamento, comandi ed allarmi. Con questo accessorio ogni unità può dialogare con i principali sistemi di supervisione.

Dispositivo installato e cablato a bordo macchina.

La lunghezza totale di ogni singola linea seriale non deve superare i 1000 metri e la linea va collegata in tipologia bus (entra/esci)

CMSC10 - Modulo di comunicazione seriale per supervisore LonWorks

Modulo che consente il collegamento seriale ai sistemi di supervisione che utilizzano il protocollo di comunicazione LonWorks. Permette l'accesso ad un elenco di variabili di funzionamento, comandi ed allarmi conforme allo standard Echelon*.

Dispositivo installato e cablato a bordo macchina.

Le attività di configurazione e conduzione della rete LonWorks sono a carico del Cliente.

La tecnologia LonWorks impiega il protocollo LonTalk[®] per la comunicazione tra i nodi della rete. Contattare il fornitore del servizio per ulteriori informazioni.

La lunghezza totale di ogni singola linea seriale non deve superare i 1000 metri e la linea va collegata in tipologia bus (entra/esci)

IVFDT - Controllo portata variabile lato utilizzo tramite inverter in funzione del salto termico

Permette la regolazione della portata d'acqua all'unità in condizioni di carico parziale mantenendo costante la differenza di temperatura in ingresso ed in uscita allo scambiatore. La regolazione della portata è gestita dall'elettronica di bordo attraverso le sonde di temperatura dell'acqua integrati a bordo dell'unità.

Pensato per lavorare su impianti con circuito primario a portata variabile disaccoppiato dal circuito secondario. In assenza di carico dell'edificio l'unità spegne i compressori mentre per le pompe è possibile scegliere una delle seguenti modalità di lavoro:

- mantenere attivo il gruppo di pompaggio alla minima portata così da consentire un continuo monitoraggio delle variazioni di carico sul secondario;
- spegnere totalmente il gruppo di pompaggio facendo delle periodiche di attivazione (con tempo impostabile) che consentono di riportare sul primario le temperature del secondario;
- spegnere totalmente il gruppo di pompaggio e rimanere in attesa del consenso alla ripartenza da parte del cliente (contatto pulito).

Dispositivo installato e cablato a bordo macchina disponibile solo con opzione VARYFLOW+.

Il controllo di portata è attivo solo con termoregolazione sulla temperatura di ritorno

CONTA2 - Misuratore di energia

Consente di visualizzare e registrare i principali parametri elettrici dell'unità. I dati sono visualizzabili sul display del dispositivo o via supervisore attraverso le specifiche variabili di protocollo.

Si possono monitorare:

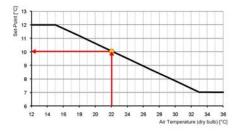
- tensione di alimentazione (V),
- corrente assorbita (A),
- frequenza (Hz),
- cosfi,
- potenza assorbita (KW),
- energia assorbita (KWh),
- componenti armoniche (%).

Il dispositivo è installato e cablato a bordo macchina

Sul dispositivo è presente una porta seriale con protocollo Modbus per il collegamento al sistema di supervisione.

SCP4 - Compensazione del set point con segnale 0-10 V

Dispositivo che consente la variazione del set-point pre-impostato attraverso un segnale esterno di tipo $0\div10~V$. All'interruzione del segnale il set-point si colloca al valore nominale impostato. I valori limiti possono essere modificati entro ampi valori.


Dispositivo installato e cablato a bordo macchina.

SPC2 - Compensazione del set point con sonda aria esterna

Dispositivo che consente la variazione automatica del set-point pre-impostato in funzione della temperatura dell'aria esterna misurata dalla sonda dell'unità. Questo dispositivo consente di ottenere la temperatura scorrevole dell'acqua prodotta, cioè variabile in funzione delle condizioni esterne, a vantaggio del risparmio energetico dell'intero impianto.

Dispositivo installato e cablato a bordo macchina.

45

RPRPDI - Rilevatore perdite refrigerante con funzionalità pump down montato nelle cofanature

Dispositivo rilevatore di perdite, installato a bordo macchina e posizionato all'interno del vano compressori, rileva perdite del circuito frigorifero interno ed abilita automaticamente la funzionalità di "pump-down", immagazzinando il refrigerante all'interno dello scambiatore a pacco alettato. Durante il pump-down l'unità non produce potenza frigorifera ed al termine dell'operazione l'unità viene spenta, un segnale di allarme dedicato è disponibile direttamente all'interno del quadro elettrico.

ACIE - Resistenza antigelo di protezione dello scambiatore interno

L'opzione permette di evitare la formazione di ghiaccio all'interno dello scambiatore a piastre lato utilizzo e preservarne il corretto funzionamento.

Si tratta di una resistenza elettrica fissata esternamente allo scambiatore che si attiva qualora la temperatura dell'acqua scenda al di sotto di un limite prefissato.

Il dispositivo è indicato nei periodi invernali quando l'unità è in stand-bay o nei casi di lunga inattività dell'impianto.

Il dispositivo è installato e cablato a bordo macchina.

A unità sezionata elettricamente il dispositivo non è in funzione.

Il dispositivo è posto a protezione esclusiva dello scambiatore lato acqua, la protezione dal gelo dei collegamenti idraulici è a cura del Cliente.

EHCS - Resistenze elettriche antigelo lato sorgente

L'opzione permette di evitare la formazione di ghiaccio all'interno dello scambiatore a piastre lato sorgente e preservarne il corretto funzionamento.

Si tratta di una resistenza elettrica fissata esternamente allo scambiatore che si attiva qualora la temperatura dell'acqua scenda al di sotto di un limite prefissato.

Il dispositivo è indicato nei periodi invernali quando l'unità è in stand-bay o nei casi di lunga inattività dell'impianto.

Il dispositivo è installato e cablato a bordo macchina.

A unità sezionata elettricamente il dispositivo non è in funzione.

Il dispositivo è posto a protezione esclusiva dello scambiatore lato acqua, la protezione dal gelo dei collegamenti idraulici è a cura del Cliente.

AP - Attacchi acqua posteriori

La versione acustica base (BN) è priva di attacchi acqua sia sul lato sorgente sia sul lato utilizzo. Il collegamento idraulico avviene all'interno dell'unità (a cura del Cliente).

Questa opzione semplifica il collegamento idraulico portando gli attacchi a filo unità sia per il lato sorgente sia per il lato utilizzo. Comprende 4 tubazioni interne fino al pannello esterno dell'unità, 8 attacchi Victaulic, 4 tronchetti del tipo 'a saldare' per il collegamento dell'impianto.

Gli attacchi acqua posteriori sono un'opzione che viene selezionata automaticamente in abbinamento a qualsiasi gruppo idronico montato a bordo unità (lato utilizzo e lato sorgente).

Accessori forniti separatamente

CSVX - Coppia di valvole di intercettazione ad azionamento manuale

Kit composto da:

- no. 2 valvole di intercettazione a farfalla in ghisa, complete di manette di azionamento e fermo meccanico di taratura;
- no. 2 attacchi rapidi tipo Victaulic con guscio isolante per il sezionamento del circuito idraulico di mandata e ritorno.

Installazione a cura del Cliente, esternamente all'unità

PSX - Alimentatore di rete

Il dispositivo rende possibile la comunicazione tra l'unità ed il controllo remoto con interfaccia utente anche quando la lunghezza della linea seriale è superiore ai 350m.

Va collegato alla linea seriale a distanza di 350m dall'unità e consente di estendere la lunghezza fino ad un massimo di 700m complessivi. Il dispositivo necessita di alimentazione elettrica esterna a 230V AC.

Alimentazione elettrica a 230V AC a cura del Cliente

RCMRX - Controllo a distanza con comando a microprocessore remoto

Opzione che consente il pieno controllo di tutte le funzioni dell'unità da posizione remota.

Facilmente installabile a parete, replica nell'aspetto e nelle funzioni l'interfaccia utente a bordo dell'unità.

Tutte le funzionalità del dispositivo possono essere replicate con un normale computer portatile collegato all'unità con un cavo di rete Ethernet e dotato di browser di navigazione internet.

Il dispositivo va installato su parete mediante idonei tasselli e collegato all'unità (installazione e cablaggio a cura del Cliente). Distanza massima di remotizzazione 350 m senza alimentazione ausiliaria. Per distanze superiori a 350 m e comunque inferiori a 700 m è necessario installare sulla linea l'accessorio 'PSX - Alimentatore di rete.

Cavo di collegamento seriale dati e alimentazione n.1 doppino twistato e schermato. Diametro del singolo conduttore 0.8 mm.

Installazione a cura del Cliente

AVIBX - Supporti antivibranti

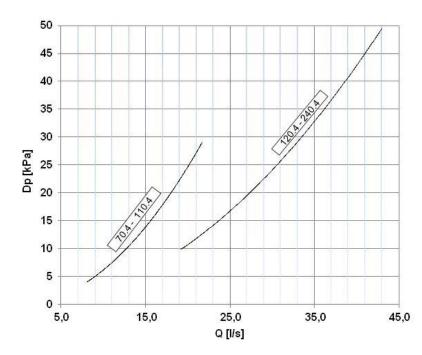
I supporti antivibranti in gomma vanno fissati in appositi alloggiamenti sui longheroni di appoggio ed hanno la funzione di smorzare le vibrazioni prodotte dalla macchina riducendo i rumori trasmessi alle strutture di appoggio.

Installazione a cura del Cliente

VS2MX- Valvola 2 vie modulante lato sorgente

Accessorio che prevede 1 valvola a due vie modulante a globo a caratteristica equipercentuale.

La valvola è adatta per una differenza di pressione fino a 2 bar per grandezze da 70.4 a 110.4 e fino a 1,5 bar per grandezze da 120.4 a 240.4.


La valvola due vie modulante, modula la portata dell'acqua tramite un segnale 0-10V emesso dal controllo elettronico dell'unità.

L'installazione è a cura del cliente.

Gli attacchi acqua sono flangiati

Perdite di carico valvola 2 vie modulante

GRANDEZZE		70.4 - 110.4	120.4-240.4
Massimo DP di apertura	[bar]	2	1,5
Massimo trafilamento	[l/min]	2,4	3,7
Diametro		4"	5"

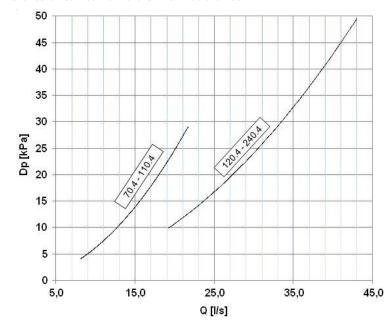
Q = Portata acqua [I/s] DP = Perdite di carico [kPa]

VS3MX - Valvola 3 vie modulante lato sorgente

Accessorio che prevede 1 valvola 3 vie modulante a globo a caratteristica equipercentuale.

La valvola è adatta per una differenza di pressione fino a 2 bar per grandezze da 70.4 a 110.4 e fino a 1,5 bar per grandezze da 120.4 a 240.4.

La valvola a tre vie modulante mettendo in comunicazione l'ingresso e l'uscita dello scambiatore lato sorgente, svolge la funzione di by-pass riducendo la portata d'acqua all'interno dello scambiatore, mantenendo tuttavia costante la portata in uscita dalla macchina.


La modulazione della valvola è gestita tramite un segnale 0-10 V generato dal controllo elettronico dell'unità.

L'installazione è a cura del cliente.

Gli attacchi acqua sono flangiati

Perdite di carico valvola 3 vie modulante

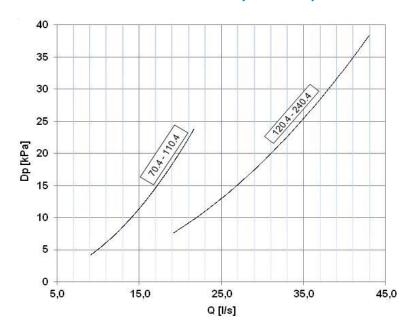
GRANDEZZE		70.4 - 110.4	120.4-240.4
Massimo DP di apertura	[bar]	2	1,5
Massimo trafilamento	[l/min]	2,4	3,7
Diametro		4"	5"

Q = Portata acqua [I/s] DP = Perdite di carico [kPa]

V2MSPX - Valvola 2 vie modulante lato sorgente per elevata pressione differenziale

Accessorio che prevede 1 valvola 2 vie modulante a sfera a caratteristica equipercentuale.

La valvola è adatta per una differenza di pressione fino a 4 bar e garantisce trafilamento pari a 0.


La valvola a due vie modulante, modula la portata del'acqua tramite un segnale 0-10V emesso dal controllo elettronico dell'unità.

L'installazione è a cura del cliente.

Gli attacchi acqua sono flangiati

Perdite di carico valvola 2 vie modulante per elevata pressione differenziale

GRANDEZZE		70.4 - 110.4	120.4-240.4
Massimo DP di apertura	[bar]	4	4
Massimo trafilamento	[l/min]	0	0
Diametro		4"	5"

Q = Portata acqua [I/s] DP = Perdite di carico [kPa]

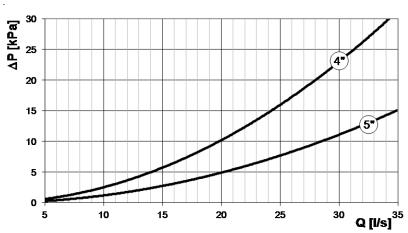
VACSUX - Valvola deviatrice ACS lato utilizzo

La valvola deviatrice acqua calda sanitaria lato utilizzo è fornita come accessorio separato dall'unità.

La chiamata dell'ACS avviene con la chiusura di un contatto pulito presente nel quadro elettrico dell'unità. In riscaldamento, la regolazione comanda la commutazione della valvola 3 vie perchè devi il flusso da impianto all'accumulo acqua calda sanitaria (ACS), cambia il set da quello dell'impianto a quello dell'ACS, effettua la termoregolazione e in base alla distanza dal set ACS attiva o disattiva i compressori. In raffreddamento, la regolazione spegne i compressori per il cambio di modo, comanda la commutazione della valvola 3 vie e avvia i compressori dopo il tempo di sicurezza dovuto all'on/off.

La valvola deviatrice ACS è composta da 2 valvole a farfalla con trafilamento nullo. Le perdite di carico massime sono inferiori a 5 kPa alle condizioni nominali di portata.

La valvola deviatrice ACS ha un grado di protezione IP 40.


E' pertanto obbligatorio che il cliente preveda una protezione per la valvola da liquidi esterni.

IFWX - Filtro a maglia di acciaio sul lato acqua

Il dispositivo evita lo sporcamento dello scambiatore da parte di eventuali impurità presenti nel circuito idraulico. Il filtro meccanico a maglia d'acciaio inossidabile deve essere posizionato sulla linea di ingresso dell'acqua. E'facilmente smontabile per la periodica manutenzione e pulizia. Comprende inoltre: valvola di intercettazione a farfalla in ghisa con attacchi rapidi e manetta di azionamento con fermo meccanico di taratura; attacchi rapidi con guscio isolante

PERDITE DI CARICO DEL FILTRO A MAGLIA DI ACCIAIO

CARATTERISTICHE DEL FILTRO A MAGLIA DI ACCIAIO

GRANDEZZE	70.4 - 110.4	120.4-240.4					
Diametro	4"	5″					
Grado di filtrazione	1,6 mm						

Q = portata acqua (I/s) DP = pe

DP = perdite di carico lato acqua (kPa)

Perdita di carico riferita a filtro pulito

Installazione a cura del Cliente, esternamente all'unità

Verificare la presenza delle necessarie intercettazioni idrauliche sull'impianto, per effettuare la periodica manutenzione

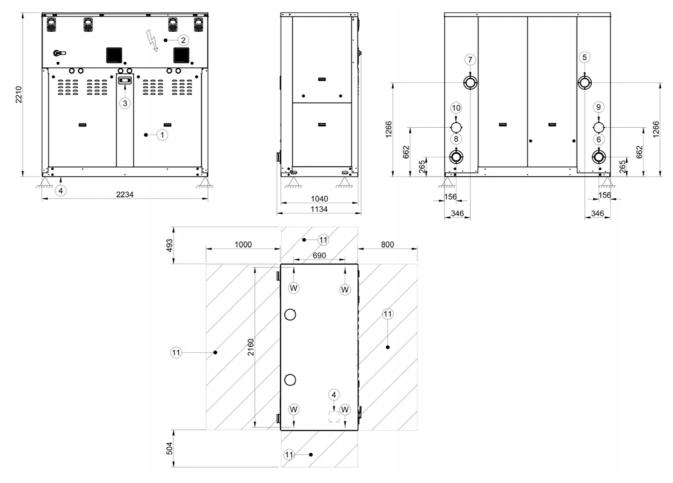
Accessorio fornito separatamente e disponibile sia per scambiatore utilizzo sia per scambiatore recupero.

Compatibilità opzioni

	DESCRIZIONE	70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
	CONFIGURAZIONI CO	OSTRUT	TIVE E P	RINCIP	ALI ACC	ESSORI									
(SFSTR)	Soft Start	0	0	0	0	0	0	0	0	0	0	-	-	-	-
	EN - CONFIGURAZ	ZIONE A	CUSTIC	SUPER	RSILENZ	IATA									
(ACL)	Attacchi acqua interni a cura del cliente	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(AP)	Attacchi acqua posteriori	•	•	•	•	•		•	•	•	•	•	•	•	•
	BN - CONFI	GURAZI	ONE AC	USTICA	BASE										
(ACL)	Attacchi acqua interni a cura del cliente	•	•	•	•	•	•	•	•	•	•	•	•	•	•
(AP)	Attacchi acqua posteriori	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ACL - ATTACCHI A	CQUA IN	TERNI A	CURA	DEL CLI	ENTE									
(HYGU2)	Gruppo idronico lato utilizzo con 2 pompe on-off	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(HYGU1)	Gruppo idronico lato utilizzo con una pompa on-off	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(VARYU)	Varyflow + (2 pompe inverter lato utilizzo)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(HYP2U)	Hydropack lato utilizzo con n°2 pompe	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(VARYS)	Varyflow + (2 pompe inverter lato sorgente)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(HYP2S)	Hydropack lato sorgente con n°2 pompe	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(HYGS1)	Gruppo idronico lato sorgente con 1 pompe on-off	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(HYGS2)	Gruppo idronico lato sorgente con 2 pompe on-off	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(V2MSP)	Valvola 2 vie modulante lato sorgente per elevata pressione differenziale	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(V2MSPX)	Valvola 2 vie modulante lato sorgente per elevata pressione differenziale (fornito separatamente)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(VS2M)	Valvola 2 vie modulante lato sorgente	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(VS2MX)	Valvola 2 vie modulante lato sorgente (fornito separatamente)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(VS3MX)	Valvola 3 vie modulante lato sorgente (fornito separatamente)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	IVFDT - CONTROLLO PORTATA VARIABILE LATO	UTILIZZ	O TRAN	AITE IN\	/ERTER	IN FUN	ZIONE D	EL SALT	O TERM	IICO					
(HYGU2)	Gruppo idronico lato utilizzo con 2 pompe on-off	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(HYGU1)	Gruppo idronico lato utilizzo con una pompa on-off	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(VARYU)	Varyflow + (2 pompe inverter lato utilizzo	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(HYP2U)	Hydropack lato utilizzo con n°2 pompe	-	-	-	-	-	-	-	-	-	-	-	-	-	-

[•] Standard

⁰ Opzione


⁻ Non disponibile

Configurazione acustica: super silenziata (EN)

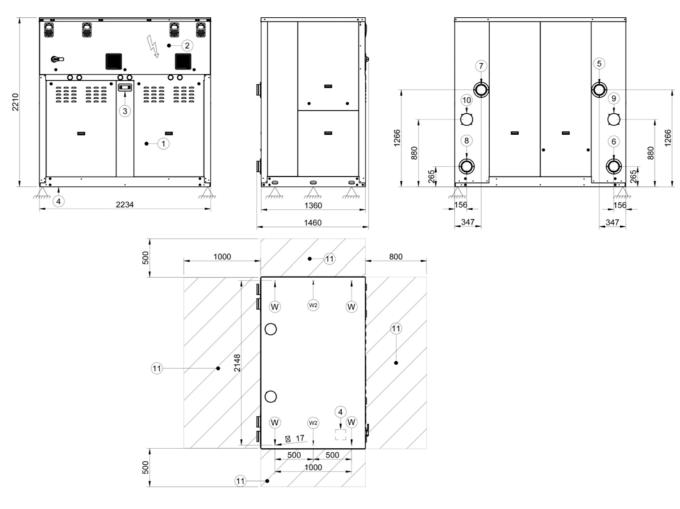
Grandezze 70.4-110.4

DAA8M70.4_110.4_EN REV00 Data/Date 03/10/2016

- 1. Vano compressori
- 2. Quadro elettrico
- 3. Tastiera controllo unità
- 4. Ingresso linea elettrica
- 5. Ritorno H20 dall'impianto lato sorgente
- 6. Mandata H20 verso l'impianto lato sorgente

- 7. Ritorno H2O dall'impianto lato utilizzo
- 8. Mandata H20 verso l'impianto lato utilizzo
- 9. Ritorno H2O dall'impianto lato sorgente senza pompe
- 10. Ritorno H2O dall'impianto lato utilizzo senza pompe
- 11. Spazi funzionali

Grandezze		70.4	75.4	80.4	85.4	90.4	100.4	110.4
A - Lunghezza	mm	2234	2234	2234	2234	2234	2234	2234
B - Profondità	mm	1134	1134	1134	1134	1134	1134	1134
C - Altezza	mm	2210	2210	2210	2210	2210	2210	2210
Peso di spedizione	Kg	1188	1210	1263	1284	1338	1509	1574
Peso in funzionamento	Kg	1242	1264	1322	1343	1406	1583	1651


La presenza di accessori opzionali può comportare una variazione significativa dei pesi indicati in tabella .

Configurazione acustica: super silenziata (EN)

Grandezze 120.4-240.4

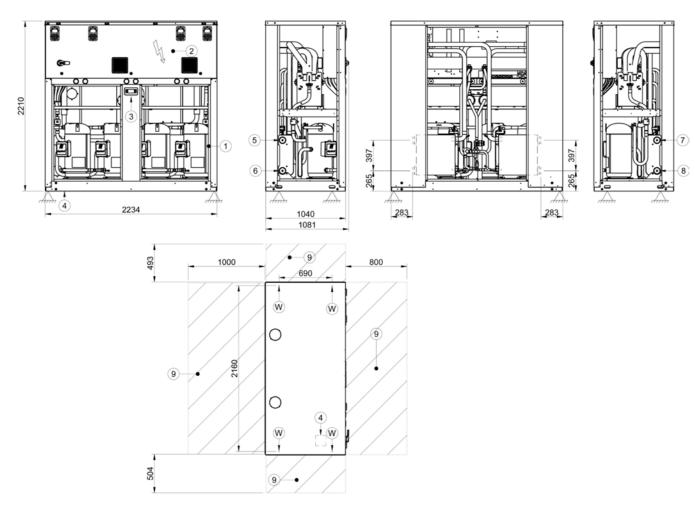
DAA8M120.4_240.4_EN REV00 Data/Date 03/10/2016

- 1. Vano compressori
- 2. Quadro elettrico
- 3. Tastiera controllo unità
- 4. Ingresso linea elettrica
- 5. Ritorno H2O dall'impianto lato sorgente
- 6. Mandata H20 verso l'impianto lato sorgente

- 7. Ritorno H2O dall'impianto lato utilizzo
- 8. Mandata H20 verso l'impianto lato utilizzo
- 9. Ritorno H2O dall'impianto lato sorgente senza pompe
- 10. Ritorno H2O dall'impianto lato utilizzo senza pompe
- 11. Spazi funzionali

W2 = solo per grandezze dalla 160.4 all 240.4

Grandezze		120.4	140.4	160.4	180.4	200.4	220.4	240.4
A - Lunghezza	mm	2234	2234	2234	2234	2234	2234	2234
B - Profondità	mm	1460	1460	1460	1460	1460	1460	1460
C - Altezza	mm	2210	2210	2210	2210	2210	2210	2210
Peso di spedizione	Kg	1820	1894	2002	2162	2265	2382	2498
Peso in funzionamento	Kg	1924	2013	2121	2291	2411	2537	2668


La presenza di accessori opzionali può comportare una variazione significativa dei pesi indicati in tabella.

Configurazione acustica: base (BN)

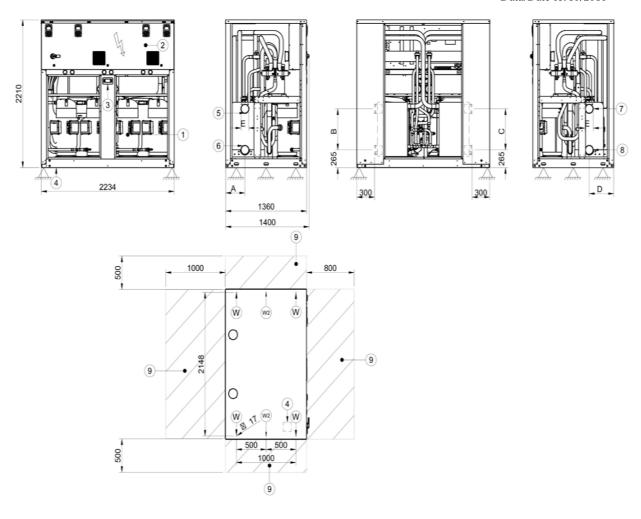
Grandezze 70.4-110.4

DAA8M70.4_110.4_BN REV00 Data/Date 03/10/2016

- 1. Vano compressori
- 2. Quadro elettrico
- 3. Tastiera controllo unità
- 4. Ingresso linea elettrica
- 5. Ritorno H2O dall'impianto lato sorgente
- 6. Mandata H2O verso l'impianto lato sorgente

- 7. Ritorno H2O dall'impianto lato utilizzo
- 8. Mandata H2O verso l'impianto lato utilizzo
- 9. Spazi funzionali

Grandezze		70.4	75.4	80.4	85.4	90.4	100.4	110.4
A - Lunghezza	mm	2234	2234	2234	2234	2234	2234	2234
B - Profondità	mm	1040	1040	1040	1040	1040	1040	1040
C – Altezza	mm	2210	2210	2210	2210	2210	2210	2210
Peso di spedizione	Kg	1058	1080	1133	1154	1208	1379	1444
Peso in funzionamento	Kg	1111	1133	1192	1213	1276	1453	1521


La presenza di accessori opzionali può comportare una variazione significativa dei pesi indicati in tabella .

Configurazione acustica: base (BN)

Grandezze 120.4-240.4

DAA8M120.4_240.4_BN REV00 Data/Date 03/10/2016

- Vano compressori
 Quadro elettrico
- 3. Tastiera controllo unità
- 4. Ingresso linea elettrica
 5. Ritorno H2O dall'impianto lato sorgente
- 6. Mandata H20 verso l'impianto lato sorgente

- 7. Ritorno H2O dall'impianto lato utilizzo
- 8. Mandata H2O verso l'impianto lato utilizzo
- 9. Spazi funzionali

Grandezze		120.4	140.4	160.4	180.4	200.4	220.4	240.4
A - Lunghezza	mm	2234	2234	2234	2234	2234	2234	2234
B - Profondità	mm	1360	1360	1360	1360	1360	1360	1360
C - Altezza	mm	2210	2210	2210	2210	2210	2210	2210
Peso di spedizione	Kg	1662	1736	1845	2005	2107	2225	2340
Peso in funzionamento	Kg	1766	1855	1963	2132	2253	2378	2510

La presenza di accessori opzionali può comportare una variazione significativa dei pesi indicati in tabella.

CLIVET SPA

Via Camp Lonc 25, Z.I. Villapaiera - 32032 Feltre (BL) - Italy Tel. + 39 0439 3131 - Fax + 39 0439 313300 - info@clivet.it

CLIVET GROUP UK Limited

4 Kingdom Close, Segensworth East - Fareham, Hampshire - PO15 5TJ - United Kingdom Tel. + 44 (0) 1489 572238 - Fax + 44 (0) 1489 573033 - enquiries@clivetgroup.co.uk

CLIVET GROUP UK Limited (Operations)

 $\label{thm:condition} \mbox{Units F5\&F6 Railway Triangle Ind Est, Walton Road - Portsmouth, Hampshire - PO6 1TG - United Kingdom Tel. +44 (0) 2392 381235 - Fax. +44 (0) 2392 381243 - service@clivetgroup.co.uk$

CLIVET ESPAÑA S.A.U.

C/ Bac de Roda, 36 - 08019 Barcelona - España Tel: +34 93 8606248 - Fax +34 93 8855392 - info@clivet.es

Av.Manoteras № 38, Oficina C303 - 28050 Madrid - España Tel. +34 91 6658280 - Fax +34 91 6657806 - info@clivet.es

CLIVET GmbH

Hummelsbütteler Steindamm 84, 22851 Norderstedt - Germany Tel. + 49 (0) 40 32 59 57-0 - Fax + 49 (0) 40 32 59 57-194 - info.de@clivet.com

CLIVET RUSSIA

 $Elektrozavodskaya\,st.\,24,\,office\,509-107023,\,Moscow,\,Russia\,Tel.+74956462009-Fax+74956462009-info.ru@clivet.com$

CLIVET MIDEAST FZCO

Dubai Silicon Oasis (DSO), High Bay Complex, Office N. 20, PO BOX 342009, Dubai, UAE Tel. + 9714 3208499 - Fax + 9714 3208216 - info@clivet.ae

CLIVET AIRCONDITIONING SYSTEMS PRIVATE LIMITED

501/502, Commercial-1, Kohinoor City, Old Premier Compound, Kirol Road, Off L B S Marg, Kurla West - Mumbai $400\,070$ - India info.in@clivet.com

www.clivet.com www.clivetlive.com

